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Today’s exercise and homework

For homework,
Take your homework from the front desk.
HW for the last time (to be returned): Exercise 9. 1.(1), (3), (5), (7); 2. (4) (5)
(9) (17); 3; 7. (1), (2); 8
HW this time (to be handed in): Exercise 9. 10. (2) (4) (6) (8), 11. (1) (3) (5),
13, 16, 17, 20, 21, 23, 24. (1) (4) (7), 26. Exercise 10. 2.(1) (3) (5) (7), 3. (2)
(4) (6), 4, 5, 6, 7, 10, 11, 12, 13. (2), 14. (1)

For exercise,
Exercise 9. 12, 14, 15; Exercise 10. 8, 16, 17, 21
(more tricky) Exercise 9. 19 (Hint: prove xty1−t ≤ tx + (1− t)y for x, y > 0 and
0 ≤ t ≤ 1), 18 (Hint: use 9. 19), 22. (Hint: the answer in the textbook)
Exercise 10. 26 (Hint: cutoff (截断))
(Ex. outside the book) If {an} is decreasing, limn an = 0 and the seq
{σn =

∑n
k=1(ak − an)} is bounded, then

∑∞
n an converge.

If {an} is increasing and bounded, an > 0, then
∑∞

n (1− an
an+1

) converge.
If {an} is increasing and limn an = ∞, then

∑∞
n (1− an

an+1
) diverges.
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Last time’s HW

In 1.(1) & (3), although it told you to prove the existence of the convergence,
you can ensure the convergence if you calculate the result by limiting the partial
sum. Simple limitation in Math.Analysis.I is unnecessary.

If you calculate the result by manipulating the series, like change the adding
order, you may need to prove the convergence. If all of the operation you used is
addition, that would be okay. But if subtraction emerges, you should be careful.
It would be better to write the name of the theorem you use in the HW, like the
Cauchy test in 2.(5).
Just use the Taylor expansion to calculate the series’ order in 2. (9).
In 3, many of you have proved na2n <

∑2n
i=n+1 ai and you get the answer. But

what about the odd case?

Since we only have the monotone property on {an}, you can expect nothing
about (2n + 1)a2n+1 once you know the behavior on {2na2n}. It’s simple but you
need to put it in your answer. Or you could just use the floor function, like
⌊ n
2
⌋an <

∑n
i=⌊ n

2
⌋ ai

7.(1) & 8 just need to use the Cauchy’s convergence test,
but you should write it carefully. It need 1

Sn
→ 0 or rn → 0.
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Last time’s HW: 2. (17)

2.(17)
Determine whether the series

+∞∑
n=1

[
(2n)!!

(2n + 3)!!

]p
(p > 0)

converge?

In the first place, you can use the String’s Formula or the Wallis’ Formula to determine
its order.

String’s formula: n! ∼ ( n
e )

n√2πn or

Wallis’ formula: limn→+∞
(

(2n)!!
(2n−1)!!

)2
1

2n+1
= π

2

The order resulted is O(n 3
2 ).
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Last time’s HW: 2.(17)

If you refuse to memorize those tedious formula and prefer only to use what you have
learned ...

First use Raabe’s test,

n( an
an+1

− 1) = n(( 2n + 5

2n + 2
)p − 1)

= n(1 +
3p

2n + 2
+ o( 1

n
)− 1)

=
3pn

2n + 2
+ o(1) → 3p

2

So we know it converges when 3
2

p < 1 and diverges when 3
2

p > 1 by Raabe’s test.

But when p = 2
3

should be discussed alone.
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Last time’s HW: 2. (17)

There can be two methods to discuss it, which is copied from your answers.
The main argument is to prove

n( an
an+1

− 1) < 1

is true when n is large.

This indicates an+1

a1 > 1
n+1

by multiplying all of them up to n+1. So the series diverges
when p = 2

3
.

Method 1. Since n( an
an+1

− 1) = 3pn
2n +

9p(p−1)n
2(2n+2)2

+ o( 1n ) =
2n

2n+2
− n

4(n+1)2
+ o( 1n ), so

we can get n( an
an+1

− 1) <
n− 1

8
n+1

+ o( 1n ). For any ϵ > 0, there exists N > 0 s.t. ∀n > N,

o( 1n ) <
ϵ
n and n( an

an+1
− 1) <

n− 1
8
+ϵ

n+1
< 1.

Method2. Use the Bernoulli’s inequality: (1 + x)α < 1 + αx when 0 < α < 1 and
(1 + x)α < 1 + αx when α > 1.
(1 + 3

2n+2
)p < 1 + 3p

2n+2
when p < 1.

So when p = 2
3

, n( an
an+1

− 1) < 2n
2n+2

< 1.
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Last time’s HW: 7. (1)

7.(1)
If
∑

n an diverge and an > 0, Sn = a1 + a2 + · · ·+ an, then
∑∞

n=1
an
Sn

diverge.

Proof.
Use the Cauchy’s convergence test (you can also prove by contradiction), we just need
to prove ∃ϵ > 0, ∀N > 0,∃n > N, p > 0, s.t.

n+p∑
i=n+1

an
Sn

> ϵ

Since
∑n+p

i=n+1
ai
Si

≥
∑n+p

i=n+1 ai
Sn+p

=
Sn+p−Sn

Sn+p
= 1− Sn

Sn+p
and Sn → ∞, so for fixed n, you

can let p be large enough and obtain Sn
Sn+p

< ϵ′ (ϵ′ < 1). Then

n+p∑
i=n+1

an
Sn

> 1− ϵ′

Finally you just let ϵ = 1− ϵ′ and ∀N just let n = N + 1.
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Last time’s HW: 8

8
If
∑

n an converge, an > 0, rk =
∑∞

n=k an, then
∑∞

n=1
an
rn

diverge.

Proof.
The proof is similar to the previous one.

More precisely, we have

n+p∑
i=n

ai
ri

≥
∑n+p

i=n+1 ai

rn
=

rn − rn+p+1

rn
= 1−

rn+p+1

rn

When n → ∞, we have rn → 0. So for any fixed n, we can let p be large enough such
that rn+p+1

rn
< ϵ′.

This means ∀n > 0, ∃p > 0 such that
∑n+p

i=n
ai
ri
> ϵ for a fixed constant ϵ = 1− ϵ′.

By Cauchy’s convergence test, we have
∑∞

i=1
ai
ri

diverge.
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Review: series

Associative law. For general case./ When it converges.

Dirichlet’s test, Abel’s test.
Commutative law. For general case./ When it absolutely converges.
Riemann’s theorem.
Infinite product. Tn =

∏
k ak ∼

∑
k ln ak∏

an converge =⇒
∏

|an| converge. The other way is not right (an = (−1)n).
If an > 0,

∏
(1 + an) converge if and only if

∑
n an converge.
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∑
n an converge.
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Review: functional series

The ordinary convergence in functional series is pointwise convergence:
limn Sn(x) = S(x) for fixed x with Sn(x) the partial sum.

Uniform convergence. Inner closed uniform convergence. Uniformly bounded.
Absolutely uniform convergence.
Some test method: Cauchy’s test (uniform version); Weierstrass M-test.
Dirichlet’s test. Abel’s test.
Arzela-Ascoli Lemma. Equicontinuity.
https://en.wikipedia.org/wiki/Arzela-Ascolitheorem

(The Lemma) Consider a sequence of real-valued continuous functions {fn}n∈N
defined on a closed and bounded interval [a, b] of the real line. If this sequence is
uniformly bounded and equicontinuous, then there exists a subsequence {fnk}k∈N
that converges uniformly. The converse is also true, in the sense that if every
subsequence of {fn} itself has a uniformly convergent subsequence, then {fn} is
uniformly bounded and equicontinuous.
Continuity preserving. Integrability preserving and integration calculation.
Differetiablity preserving and calculation (for differentiation, we can only use the
1st derivative to control the original function, the converse is always impossible).
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Exercise

12
If
∑

n an converge, does
∑

n a2n converge?

14
Find {an} and {bn} such that limn

an
bn

= l ̸= 0 but
∑

n an and
∑

n bn have different
convergence.

15
If
∑

n an < ∞ and bn = o(an), is it true that
∑

n bn must converge?
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Proof

Proof.
All of the above deduction is true for positive series. So the counter-example should
be given by general series, in which case the alternating series is one natural choice
(this is the only one treated specially in the textbook, too general series have nothing
different from the limit theory in Math.Anal I).
So the answer could be:

12. an = (−1)n 1√n .

13. bn = an + o(an). o(an) diverge when an converge, like an = (−1)n 1√n and
o(an) = 1

n .

14. Just use 13 and let bn = 1
n , an = (−1)n 1√n here.
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Exercise

19. Holder’s inequality
p, q > 0 and 1

p + 1
q = 1,

∑
n |an|p and

∑
n |bn|q converge. Prove

∑
n anbn absolutely

converge and the Holder inequality:

∑
n

|anbn| ≤ (
∑

n
|an|p)

1
p (

∑
n |bn|q)

1
q

18. Minkowski’s inequality
p > 0,

∑
n |an|p and

∑
n |bn|p converge. Prove the following inequality:

(
∑

n
|an + bn|p)

1
p ≤ (

∑
n

|an|p)
1
p + (

∑
n

|bn|p)
1
p
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Proof of the Holder

Proof.
For the Holder’s inequality, we just need to take the limit of the finite Holder’s
inequality.

For the finite version, we need a auxiliary inequality:

xty1−t ≤ tx + (1− t)y, ∀0 ≤ t ≤ 1, x, y > 0 (1)

Once this is proved, just let x =
|an|p∑
|an|p

, y =
|bn|∑
|bn|q

and t = 1
p (notice that

1
p + 1

q = 1). Then the inequality becomes:

|an|

(
∑

|an|p)
1
p

|bn|

(
∑

|bn|q)
1
q

≤
1

p
|an|p∑
|an|p

+
1

q
|bn|q∑
|bn|q

Finally we sum up the above inequality w.r.t. n and the right hand side becomes
1
p + 1

q = 1, which derives the Holder’s inequality.
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Proof of the auxiliary inequality

Proof.
We can use the Jensen’s inequality to prove the auxiliary inequality (1).

Jensen’s inequality
For a real convex function φ , numbers x1, x2, . . . , xn in its domain, and positive
weights ai with

∑n
i=1 ai = 1, Jensen’s inequality can be stated as:

φ(
∑

aixi) ≤
∑

aiφ(xi),

where n can be finite of infinite (series). Moreover, this inequality can be generalized
to integration (you can treat integration as uncountable summation where you
summed up numbers indexed on the real line). The integral version is:

φ

(
1

b − a

∫ b

a
f(x)dx

)
≤

1

b − a

∫ b

a
φ(f(x))dx

for any f : [a, b] → R being a non-negative integrable function and φ is convex (note
here the finite interval [a, b] is necessary).
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Proof of the auxiliary inequality

Proof.

Jensen’s inequality (continuation)
More generally, rather than using uniform weights, we can use arbitrary weights in the
integral version:

φ

(∫
R

f(x)g(x)dx
)

≤
∫

R
φ(f(x))g(x)dx

where f(x) is a non-negative integrable function, φ is convex and g(x) is a
non-negative function with

∫
R g(x)dx = 1.

In the previous case just let g(x) = 1
b−a1[a,b] being constant on the interval [a, b].

From https://en.wikipedia.org/wiki/Jensen%27s_inequality

Convex function
The original definition for a convex function is:
Let X be a convex set and a function f : X → R is called convex if it satisfies:

∀x1, x2 ∈ X, ∀t ∈ [0, 1] : f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2)

(from https://en.wikipedia.org/wiki/Convex_function)
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Proof of the auxliary inequality

Convex function
There are some good properties for a convex function:

A convex function f of one real variable is continuous (Lipschitz-continous) except
on the endpoints,
admits left/right derivatives and these derivatives are monotonically
non-decreasing (this means at most countable points are indifferentiable).
(star) A differentiable function of one is convex if and only if

f(x) ≥ f(y) + f′(y)(x − y),

for multi-variable case x, y ∈ Rn, this becomes

f(x) ≥ f(y) +∇f(y)T(x − y),

(star) A twice differentiable (C2) function f of one variable is convex on an
interval if and only if f′′ ≥ 0. For multi-variable case, the Hessian matrix (∇2f)
shall be non-negative definite, that is, for any u ∈ Rn, we have uT∇2fu ≥ 0.
From https://en.wikipedia.org/wiki/Convex_function. The last two
property is used more frequently.

Remark: Convex optimization and convex analysis is particularly useful machine
learning.
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Proof of the auxliary inequality and Minkowski’s inequality

Proof.
So first we can take the logarithm on both sides, which leads to

t ln x + (1− t) ln y ≤ ln(tx + (1− t)y). (2)

Taking the twice differentiation of ln x, (ln x)′′ = − 1
x2 < 0, so it’s concave and − ln x

is convex.

The Jensen’s inequality tells us − ln(tx + (1− t)y) ≤ t[− ln x] + (1− t)[− ln y]. So (2)
is true and the auxiliary inequality follows from it.

Finally we attempt to prove the Minkowski’s inequality using the Holder’s inequality.∑
|an + bn|p =

∑
|an + bn||an + bn|p−1

≤
∑

|an||an + bn|p−1 +
∑

|bn||an + bn|p−1(triangle’s inequality)

≤ (
∑

|an|p)
1
p (

∑
|an + bn|q(p−1))

1
q + (

∑
|bn|p)

1
p (

∑
|an + bn|q(p−1))

1
q

= (
∑

|an|p)
1
p (

∑
|an + bn|p)1−

1
p + (

∑
|bn|p)

1
p (

∑
|an + bn|p)1−

1
p

(q(p − 1) = p and 1

q
= 1−

1

p
)
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Exercise

22
an > 0 and

∑
n

1
an

converge. Prove the series
∑

n
n

a1+···+an
converge.

Proof.
Use the answer in the textbook as a hint.
1. If {an}n is monotone, since

∑
n

1
an

converge, we need 1
an

→ 0, which means
an → ∞. So we must have {an} is increasing. In which case, we can have the
following derivation:

n
a1 + a2 + · · ·+ an

≤
n

a⌊ n
2
⌋ + · · ·+ an

≤
n

n
2

a⌊ n
2
⌋
=

2

a⌊ n
2
⌋

(if you use a2n in this case, just like HW, you shall mention the odd case).
2. If {an} is not monotone. Then let b1, b2, · · · , bn be the rearrangement of the
original a1, a2, · · · , an with b1 ≤ b2 ≤ · · · ≤ bn. For convenience we let n = 2m here.
Then we can derive:

n
a1 + a2 + · · ·+ an

=
n

b1 + b2 + · · ·+ bn
≤

2

bm
, (3)

where the last inequality follows from the case 1.
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Proof of 22

Proof.
We sum the above inequality (3) up to n = 2m and obtain:

2m∑
i=1

i
a1 + a2 + · · ·+ ai

≤
2m∑
i=1

2

b⌊ i
2
⌋
=

m∑
i=1

4

bi
≤

2m∑
i=1

4

ai
,

where the intermediate equality is because almost every bi is summed twice (you may
need more subtle discussions of the beginning terms), and we need to relax the
summation from m terms to 2m terms because we don’t know where b1, b2, · · · , bm
lie in the original sequence a1, a2, · · · , an. The safest way is to use all of them to
control the summation of bn.

Remark: 1. Since b1, b2, · · · , bn is just an rearrangement of the original
a1, a2, · · · , an, we cannot direct control the series

∑∞
i

i
a1+a2+···+ai

but need to cope
with the partial sum.
2. Since the above inequality is about the summation and we will take a limit
afterwards, we don’t need to discuss the odd case here.

Finally we let m → ∞ and get
∑∞

i
i

a1+a2+···+ai
≤ 4

∑∞
i

1
ai

< ∞.
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Exercise

10.8
If fn(x) ⇒ f(x) and gn(x) ⇒ g(x) on some interval I, {fn} and {gn} are uniformly
bounded, then on I we have fn(x)gn(x) ⇒ f(x)g(x)

10.16
Prove the functional sequence fn(x) = (1 + x

n )
n uniformly converge in [0, 1] and

calculate the limit:
lim

n→∞

∫ 1

0
(1 +

x
n
)ndx

17
fn ∈ R[a, b] and fn(x) inner closed uniformly converge to f(x) on R, there is a function
g(x) satisfying |fn(x)| ≤ g(x) and

∫
R g(x) < ∞. Prove f(x) ∈ R(−∞,∞) and

lim
n

∫
R

fn(x)dx =

∫
R

lim
n

fn(x)dx =

∫
R

f(x)dx
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Proof of 10.8

Proof.
10.8. We just use the cutoff(截断) trick:

|fn(x)gn(x)− f(x)g(x)| = |fn(x)gn(x)− f(x)gn(x) + f(x)gn(x)− f(x)g(x)|
≤ |fn(x)− f(x)||gn(x)|+ |f(x)||gn(x)− g(x)|

Since fn, gn are uniformly bounded, we assume ∃M s.t. |fn(x)| ≤ M and |gn(x)| ≤ M.
Let n → ∞ and we can get |f(x)| ≤ M and |g(x)| ≤ M (this only needs pointwise
convergence).
Then by the uniform convergence, ∀ϵ > 0,∃N > 0 s.t. |fn(x)− f(x)| < ϵ

2M and
|gn(x)− g(x)| < ϵ

2M for ∀n > N.
It follows that

|fn(x)gn(x)− f(x)g(x)| < ϵ

2M
M +

ϵ

2M
M = ϵ.

for any ϵ and x ∈ I. Let ϵ → 0 and we get fn(x)gn(x) ⇒ f(x)g(x).
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Proof of 10.16

Proof.
First we just take the limit for a fixed x and obtain limn(1 + x

n )
n = ex. Then it’s

reasonable to expect the functional sequence will also uniformly converge to ex.

Since [0, 1] is a closed interval and ex is continuous on it, it’s also uniformly continuous
on it, i.e., ∀ϵ > 0,∃δ > 0 s.t. ∀x1, x2 ∈ [0, 1] and |x1 − x2| < δ, then |ex1 − ex2 | < ϵ.

So we can first take a logarithm ln fn(x) = n ln(1 + x
n ) and test its convergence. By

Taylor’s expansion, we have

ln fn(x) = n( x
n
+ o( x

n
)) = x + xo(1)

By |x| ≤ 1 is finite, | ln fn(x)− x| = |x|o(1) ≤ o(1) → 0 as n → ∞. More formally,
∀ϵ′, ∃N s.t. ∀n > N, we have |o(x)| ≤ |o(1)| < ϵ′.

Finally using the uniform continuity, we just let ϵ′ = δ above and derive
|fn(x)− ex| < ϵ for n > N.
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Proof of 10.17

Proof.
First we prove the integration

∫
R f(x)dx by Cauchy’s convergence test. Since

|fn(x)| ≤ g(x), we have |f(x)| ≤ g(x) by limitation. Then ∀ϵ, ∃M > 0 s.t. ∀n,m > M∫−m
−n g(x)dx +

∫ n
m g(x)dx < ϵ, which leads to

|
∫−m
−n f(x)dx +

∫ n
m f(x)dx| <

∫−m
−n |f(x)|dx +

∫ n
m |f(x)|dx < ϵ. So by Cauchy’s

convergence test, we have
∫

R f(x) < ∞.

limn
∫

R fn(x)dx =
∫

R f(x)dx follows similarly:

|
∫

R
fn(x)dx −

∫
R

fn(x)dx| ≤
∫ −M

−∞
|fn(x)|dx +

∫ −M

−∞
|f(x)|dx +

∫ ∞

M
|fn(x)|dx +

∫ ∞

M
|f(x)|dx

+

∫ M

−M
|fn(x)− f(x)|dx

By the same discussion, ∀ϵ > 0, ∃M s.t. the first 4 terms above are all less than ϵ.
The last term is controlled by the uniform convergence: we can find n large enough
s.t. |fn(x)− f(x)| < ϵ

2M . So we have |
∫

R fn(x)dx −
∫

R fn(x)dx| < 4ϵ+ ϵ
2M2M = 5ϵ.

Finally let ϵ → ∞ and we get limn
∫

R fn(x)dx =
∫

R f(x)dx.
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Exercise

10.21
(1) f is differentiable on I, f′(x) is uniformly continuous on I. Prove
Fn(x) = n[f(x + 1

n )− f(x)] uniformly converges on I.

(2) Prove fn(x) = n(
√

x + 1
n −

√x) inner closed uniformly converge on (0,+∞) but
not uniformly converge on it.

10.26
fn(x) is continuous on [0, 1], and pointwisely converge to f(x). Then fn(x) ⇒ f(x) if
and only if fn(x) are equicontinuous on [0, 1].
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Proof of 10.21

Proof.
10.21.(1)
Notice here Fn(x) looks like the definition f(x+h)−f(x)

h of the differentiation when you
replace the increment h by 1

n , so it shall converge to f′(x).

Since f′(x) exists, we can apply the Lagrange Mean Value Theorem and get
Fn(x) = f′(x + θ

n ) where θ ∈ [0, 1] and depends on x. But we have the uniform
continuity of f′(x) on I, so when n is large enough s.t. | θn | ≤

1
n < δ (δ is the one used

in the definition of the uniform continuity), we have |Fn(x)− f′(x)| < ϵ. This implies
Fn(x) ⇒ f′(x).
10.21.(2)
By the above discussion, we know the singularity only occurs at the endpoint, that is,
0 and ∞. So the counter-example should converge to these two values. By the
Cauchy’s convergence test, we need the example satisfies: ∃ϵ, ∀N, we can find
n,m > N and x ∈ (0,∞) s.t. |fn(x)− fm(x)| > ϵ.

We just choose n > N,m = 2n and x = 1
n , then

|fn(x)− fm(x)| = |(
√
2− 1)

√n − (
√
6− 2)

√n| → ∞ as n → ∞.
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Proof of 10.26

Proof.
First we prove the necessity.
Since f ∈ C[0, 1], it’s also uniformly continuous on it. So ∀ϵ′, ∃δ0,N s.t. whenever
|x1 − x2| < δ0 and n > N, we have |f(x1)− f(x2)| < ϵ′ and |fn(x)− f(x)| ≤ ϵ′ for any
x ∈ [0, 1].
Therefore for any n > N, we have

|fn(x1)− fn(x2)| ≤ |fn(x1)− f(x1)|+ |f(x1)− f(x2)|+ |fn(x2)− f(x2)|
< ϵ′ + ϵ′ + ϵ′ = 3ϵ′ ∀|x1 − x2| < δ0, n > N

Since fn is also continuous on [0, 1], they are uniformly continuous. Hence we can find
δ1, δ2, · · · , δN s.t. ∀|x1 − x2| < δi we have |fi(x1)− fi(x2)| < ϵ. Finally we let
ϵ = 3ϵ′, δ = min{δ0, δ1, · · · , δN} and we derive the equicontinuity of {fn} on [0, 1]:
whenever |x1 − x2| < δ we have |fn(x1)− fn(x2)| < ϵ for any n ∈ N.

Then we prove the sufficiency.
Since {fn} is equicontinuous, we can find δ, such that whenever |x1 − x2| < δ we have
|fn(x1)− fn(x2)| < ϵ for any n ∈ N. We can then give a finite partition of [0, 1]:
0 = t0 < t1 < · · · < tk = 1 with |ti − ti+1| < δ. Since [0, 1] is finite, such a finite
partition is possible.
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Proof of 10.26 (Continue)

Proof.
∀0 ≤ i ≤ k, since fn pointwisely converge to f(x), by Cauchy’s convergence test, we
can find Ni s.t. ∀m, n > Ni we have |fn(ti)− fm(ti)| < ϵ.

Since k < ∞, we can let N = max{N0,N1, · · · ,Nk} and obtain N < ∞.
Then ∀x, it must lie in some interval, assume ti ≤ x < ti+1. Since
|x − ti+1| ≤ |ti − ti+1| < δ. We have |fn(x)− fn(ti+1)| < ϵ for any n ∈ N. So for any
n,m > N, we have

|fn(x)− fm(x)| ≤ |fn(x)− fn(ti+1)|+ |fn(ti+1)− fm(ti+1)|+ |fm(x)− fm(ti+1)|
< ϵ+ ϵ+ ϵ = 3ϵ

Finally by Cauchy’s convergence test we obtain fn ⇒ f.

Remark: Actually you can also prove the uniform convergence directly without Cauchy,
just combine the equicontinuous δ and f’s uniformly continuous δ′ togenther.
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Exercise

exercise outside the book
If {an} is decreasing, limn an = 0 and the seq {σn =

∑n
k=1(ak − an)} is bounded, then∑∞

n an converge.

If {an} is increasing and bounded, an > 0, then
∑∞

n (1− an
an+1

) converge.

If {an} is increasing and limn an = ∞, then
∑∞

n (1− an
an+1

) diverges.
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proof

Proof.
1. Just notice somewhat tricky relation:

σn =
n∑

k=1

(ak − an) =
n∑

k=1

ak − nan ≥
m∑

k=1

ak − man,

for m < n, where the last inequality follows from
∑n

k=m+1 ak ≥ (n − m)an. So∑m
k=1 ak ≤ man + σn. Since limn an = 0 and σn bounded, when we let n → ∞, we

have
∑m

k=1 ak is bounded.
But from {an} decreasing and limn an = 0 we know this is a positive series and so we
get its convergence.

2. Just notice
M∑

n=m
(1−

an
an+1

) ≤
1

am
(aM − am) ≤

ϵ

L − ϵ

where limn an = L (the existence follows from {an} increasing and bounded), ϵ is
chosen arbitrary. We know when m,M is large enough we can make aM − am < ϵ and
am > L − ϵ for any ϵ > 0.
By Cahuchy’s convergence test ∀ϵ′ we just choose ϵ small enough such that ϵ

L−ϵ
< ϵ′

and then choose suitable threshold N.
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Proof

Proof.
Just notice:

n+p∑
k=n

(1−
an

an+1
) ≥

1

an+p+1
(an+p+1 − an) = 1−

an
an+p+1

and when p → ∞ with n fixed, we have an+p+p → ∞ and the right hand side tends to
1.
So by Cauchy’s convergence test, ∃ϵ fixed, ∀N we just let n = N + 1 and p large
enough to make 1− an

an+p+1
> ϵ.

Thus the series diverge.
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Something I want to mention...

There’s something I want to mention further, which are questions students asked after
the class and I think it’s important.

Somebody asked me a question on the textbook: determine the convergence
property of

∑+∞
n=1

(−1)[
√n]

np (p > 0).
This can be done when you add up the terms with the same sign.

4k2+8k+3∑
n=4k2

(−1)[
√n]

np =

4k2+4k∑
n=4k2

1

np −
4k2+8k+3∑

k=4k2+4k+1

1

np ≤
4k + 1

4k2p −
4k + 3

4(k + 1)2p

=
1

k2p−1
−

1

(k + 1)2p−1
+

1

k2p +
1

(k + 1)2p

So it’s easy to prove the convergence of
∑4k2−1

i=1
(−1)[

√n]

np when p > 1
2

if you add
the above inequality up to k. This forms a convergent subsequence {Snk} of the
partial sum {Sn}. Since |Sn − Snk | ≤

∑4k2+8k+3
n=4k2

1
np ≤ 8k+4

4k2p → 0, this shows the
convergence of the original sequence {Sn}.
For p ≤ 1

2
, by Cauchy’s convergence test,

∑4k2+4k
n=4k2

1
np ≥ 4k+1

4(k+1)2p should
approximate to 0 if it converge.
But this is impossible, so it diverge when p ≤ 1

2
.
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Something I want to mention...

For the absolute convergence, the critical value 1 is easily found and be verified.
For 22, somebody said it can be done by a total rearrangement of {an}. I think
it’s okay to prove it in this way.
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