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Today's exercise and homework

For homework,
m Take your homework from the front desk.

= HW for the last time (to be returned): Exercise 9. 1.(1), (3), (5), (7); 2. (4) (5)
(9) (17); 3; 7. (1), (2); 8

= HW this time (to be handed in): Exercise 9. 10. (2) (4) (6) (8), 11. (1) (3) (5),
13, 16, 17, 20, 21, 23, 24. (1) (4) (7), 26. Exercise 10. 2.(1) (3) (5) (7), 3. (2)
(4) (6), 4,5, 6, 7, 10, 11, 12, 13. (2), 14. (1)

For exercise,
m Exercise 9. 12, 14, 15; Exercise 10. 8, 16, 17, 21

u (more tricky) Exercise 9. 19 (Hint: prove xty! =t < tx+ (1 — t)y for x,y > 0 and
0 < t<1), 18 (Hint: use 9. 19), 22. (Hint: the answer in the textbook)
Exercise 10. 26 (Hint: cutoff (Z#F))

m (Ex. outside the book) If {a,} is decreasing, lim, a, = 0 and the seq
{on =>"4_1(ak — an)} is bounded, then >-°° a, converge.
If {an} is increasing and bounded, a, > 0, then > °°(1 — —22—) converge.

an41

If {an} is increasing and lim, a, = oo, then >-°°(1 — aa_’;l) diverges.
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Last time's HW

= In 1.(1) & (3), although it told you to prove the existence of the convergence,
you can ensure the convergence if you calculate the result by limiting the partial
sum. Simple limitation in Math.Analysis.| is unnecessary.
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Last time's HW

= In 1.(1) & (3), although it told you to prove the existence of the convergence,
you can ensure the convergence if you calculate the result by limiting the partial
sum. Simple limitation in Math.Analysis.| is unnecessary.

m If you calculate the result by manipulating the series, like change the adding

order, you may need to prove the convergence. If all of the operation you used is
addition, that would be okay. But if subtraction emerges, you should be careful.
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Last time's HW

= In 1.(1) & (3), although it told you to prove the existence of the convergence,
you can ensure the convergence if you calculate the result by limiting the partial
sum. Simple limitation in Math.Analysis.| is unnecessary.

m If you calculate the result by manipulating the series, like change the adding
order, you may need to prove the convergence. If all of the operation you used is
addition, that would be okay. But if subtraction emerges, you should be careful.

m It would be better to write the name of the theorem you use in the HW, like the
Cauchy test in 2.(5).
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Last time's HW

= In 1.(1) & (3), although it told you to prove the existence of the convergence,
you can ensure the convergence if you calculate the result by limiting the partial
sum. Simple limitation in Math.Analysis.| is unnecessary.

m If you calculate the result by manipulating the series, like change the adding
order, you may need to prove the convergence. If all of the operation you used is
addition, that would be okay. But if subtraction emerges, you should be careful.

m It would be better to write the name of the theorem you use in the HW, like the
Cauchy test in 2.(5).

Just use the Taylor expansion to calculate the series’ order in 2. (9).
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Last time's HW

= In 1.(1) & (3), although it told you to prove the existence of the convergence,
you can ensure the convergence if you calculate the result by limiting the partial
sum. Simple limitation in Math.Analysis.| is unnecessary.

m If you calculate the result by manipulating the series, like change the adding
order, you may need to prove the convergence. If all of the operation you used is
addition, that would be okay. But if subtraction emerges, you should be careful.

m It would be better to write the name of the theorem you use in the HW, like the
Cauchy test in 2.(5).

Just use the Taylor expansion to calculate the series’ order in 2. (9).

m In 3, many of you have proved naz, < Z,?:"nJrl a; and you get the answer. But
what about the odd case?
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Last time's HW

In 1.(1) & (3), although it told you to prove the existence of the convergence,
you can ensure the convergence if you calculate the result by limiting the partial
sum. Simple limitation in Math.Analysis.| is unnecessary.

If you calculate the result by manipulating the series, like change the adding
order, you may need to prove the convergence. If all of the operation you used is
addition, that would be okay. But if subtraction emerges, you should be careful.

It would be better to write the name of the theorem you use in the HW, like the
Cauchy test in 2.(5).
Just use the Taylor expansion to calculate the series’ order in 2. (9).

In 3, many of you have proved naz, < Z,-z:"nJrl a; and you get the answer. But
what about the odd case?

Since we only have the monotone property on {an}, you can expect nothing
about (2n+ 1)azn+1 once you know the behavior on {2naz,}. It's simple but you
need to put it in your answer. Or you could just use the floor function, like

[2)an < S0 0 2
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Last time's HW

In 1.(1) & (3), although it told you to prove the existence of the convergence,
you can ensure the convergence if you calculate the result by limiting the partial
sum. Simple limitation in Math.Analysis.| is unnecessary.

If you calculate the result by manipulating the series, like change the adding
order, you may need to prove the convergence. If all of the operation you used is
addition, that would be okay. But if subtraction emerges, you should be careful.

It would be better to write the name of the theorem you use in the HW, like the
Cauchy test in 2.(5).

Just use the Taylor expansion to calculate the series’ order in 2. (9).

In 3, many of you have proved naz, < Z,-z:"nJrl a; and you get the answer. But
what about the odd case?

Since we only have the monotone property on {an}, you can expect nothing
about (2n+ 1)azn+1 once you know the behavior on {2naz,}. It's simple but you
need to put it in your answer. Or you could just use the floor function, like
[5]an < ZLL%J aj

7.(1) & 8 just need to use the Cauchy’s convergence test,

but you should write it carefully. It need SLH —0orrm—0.
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Last time's HW: 2. (17)

Determine whether the series

+oo
(2mt 1P
; [m] (p>0)

converge?

In the first place, you can use the String's Formula or the Wallis' Formula to determine
its order.
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Last time's HW: 2. (17)

Determine whether the series

+oo
(2mt 1P
; [m] (p>0)

converge?

In the first place, you can use the String's Formula or the Wallis' Formula to determine
its order.
String’s formula: n! ~ (2)"v/27n  or

e

2
o . n
Wallis' formula: limp_s 4+ o0 (%) ﬁ —

INE]
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Last time's HW: 2. (17)

Determine whether the series

+oo
(2mt 1P
; [m] (p>0)

converge?

In the first place, you can use the String's Formula or the Wallis' Formula to determine
its order.
String’s formula: n! ~ (2)"v/27n  or

e

2
o . n
Wallis' formula: limp_s 4+ o0 (%) ﬁ —

INE]

The order resulted is O(n%).
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Last time's HW: 2.(17)

If you refuse to memorize those tedious formula and prefer only to use what you have
learned ...
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Last time's HW: 2.(17)

If you refuse to memorize those tedious formula and prefer only to use what you have
learned ...
First use Raabe’s test,

a 2n+5
(2= =l 5 = 1)
3p 1
=n(1 -1
n( tonra T ()—1
P (1) — 2P
2n+2 2
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Last time's HW: 2.(17)

If you refuse to memorize those tedious formula and prefer only to use what you have
learned ...
First use Raabe’s test,

a 2n+5

(2= =l 5 = 1)

3p 1
=n(1 —-)—1
n(+2n+2+0(n) )

3 3

=P o) 2P

2n+2 2

So we know it converges when %p < 1 and diverges when %p > 1 by Raabe’s test.
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Last time's HW: 2.(17)

If you refuse to memorize those tedious formula and prefer only to use what you have
learned ...
First use Raabe’s test,

a 2n+5

(2= =l 5 = 1)

3p 1
=n(1 —-)—1
n(+2n+2+0(n) )

3 3

=P o) 2P

2n+2 2

So we know it converges when %p < 1 and diverges when %p > 1 by Raabe’s test.

But when p = % should be discussed alone.
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Last time's HW: 2. (17)

There can be two methods to discuss it, which is copied from your answers.
The main argument is to prove

an

n( -1)<1

an+1

is true when n is large.
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Last time's HW: 2. (17)

There can be two methods to discuss it, which is copied from your answers.
The main argument is to prove

n( an

-1)<1
an+1

is true when n is large.

This indicates a’:l'l > nj_l by multiplying all of them up to n+1. So the series diverges
2

when p = 2.
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Last time's HW: 2. (17)

There can be two methods to discuss it, which is copied from your answers.
The main argument is to prove

n( an

-1)<1
an+1

is true when n is large.
This indicates "+1 >

by multiplying all of them up to n+1. So the series diverges

n+1
when p = %
. 3 9p(p—1
Method 1. Since n(* ) =4 % o(3)= T—H - (n+1)2 +0o(1), so
we can get n( ) <rs + o( ). For any € > 0, there exists N > 0 s.t. Vn > N,
1+6
o(%) < % and n(an_c1 il < 1.
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Last time's HW: 2. (17)

There can be two methods to discuss it, which is copied from your answers.
The main argument is to prove

n( an

-1)<1
an+1

is true when n is large.

This indicates "+1 >

when p = %

Method 1. Since n( 2

n+1 by multiplying all of them up to n+1. So the series diverges

):%+% ()7T+2_ (,,+1)2+0()50

we can get n( ) <rs &+ o( ). For any € > 0, there exists N > 0 s.t. Vn > N,
1 n 1ie
o(3) < £ and n(a"_*_1 nil < 1.

Method2. Use the Bernoulli's inequality: (1 + x)* < 1+ ax when 0 < a < 1 and
1+x* < 1—|—axwhen a>1.

(1+2ni_2) <1—|—2n+2 when p < 1.

Sowhenng, n(-2 )<2n+2<1.

a+1
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Last time's HW: 7. (1)

If 3=, an diverge and a, > 0, Sp = a1 + a2 + - - - + an, then >_7° g—: diverge.

n=1

Use the Cauchy’s convergence test (you can also prove by contradiction), we just need
to prove de > 0,VN > 0,3n > N,p > 0, s.t.

n+p

Z %>e

i=n+1 ="
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Last time's HW: 7. (1)

7.(1)
+ ap, then $°°° g—: diverge.

If 3=, an diverge and a, >0, Sp=a1 + a2+ --- %

Use the Cauchy’s convergence test (you can also prove by contradiction), we just need
to prove de > 0,VN > 0,3n > N,p > 0, s.t.
ntp

Z f>e

= n+1

n+p
i— aj S, ) .
Z’*”“ P 2mbpTon . S gapd Sn — 00, so for fixed n, you

nt+p a3
Since 3 i—nt1 5 Si = Sotp T Sap Sntp
" (¢/ < 1). Then
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Last time's HW: 7. (1)

7.(1)
.-+ + ap, then >°° g—: diverge.

If > an diverge and a, > 0, S, = a1 + a2 +

n=1

| :

Proof
Use the Cauchy’s convergence test (you can also prove by contradiction), we just need

to prove de > 0,VN > 0,3n > N,p > 0, s.t.
ntp

Z f>e

= n+1

n+p
i— aj S, ) .
Z’*”“ P 2mbpTon . S gapd Sn — 00, so for fixed n, you

nt+p a3
Since 3 i—nt1 5 Si = Sotp T Sap Sntp
" (¢/ < 1). Then

Finally you just let e =1 — ¢’ and VN just let n = N + 1.
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Last time's HW: 8

If 3=, an converge, ap > 0, ry = > 12, an, then >0° 1 o o diverge.

Proof
The proof is similar to the previous one.

More precisely, we have

> = =1

ip aj TP LA th— e  Ingptl
i In n In
When n — oo, we have r, — 0. So for any fixed n, we can let p be large enough such
that TEEEL < ¢/,

This means Vn > 0,3p > 0 such that Z"'HJ 2 > ¢ for a fixed constant e = 1 — ¢’

By Cauchy's convergence test, we have Z/’:l ‘Z’ diverge. O
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Review: series

m Associative law. For general case./ When it converges.
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Review: series

m Associative law. For general case./ When it converges.
m Dirichlet’s test, Abel’s test.
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Review: series

m Associative law. For general case./ When it converges.
m Dirichlet’s test, Abel’s test.

= Commutative law. For general case./ When it absolutely converges.
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Review: series

m Associative law. For general case./ When it converges.
m Dirichlet’s test, Abel’s test.
= Commutative law. For general case./ When it absolutely converges.

m Riemann’s theorem.
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Review: series

m Associative law. For general case./ When it converges.

m Dirichlet’s test, Abel’s test.

= Commutative law. For general case./ When it absolutely converges.
m Riemann’s theorem.

Infinite product. T, =[], ax ~ >, Inak
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Review: series

m Associative law. For general case./ When it converges.

m Dirichlet’s test, Abel’s test.

= Commutative law. For general case./ When it absolutely converges.

m Riemann’s theorem.

= Infinite product. T, =[], ax ~ >, Inax

= [ an converge => []|an| converge. The other way is not right (a, = (—1)").
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IS

m Associative law. For general case./ When it converges.
m Dirichlet’s test, Abel’s test.
= Commutative law. For general case./ When it absolutely converges.

m Riemann’s theorem.

Infinite product. T, =[], ax ~ >, Inak
= [ an converge => []|an| converge. The other way is not right (a, = (—1)").

If an > 0, [T(1 + an) converge if and only if > a, converge.
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Review: functional series

m The ordinary convergence in functional series is pointwise convergence:
lim, Sp(x) = S(x) for fixed x with Sp(x) the partial sum.
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https://en.wikipedia.org/wiki/Arzela-Ascoli theorem

Review: functional series

m The ordinary convergence in functional series is pointwise convergence:
lim, Sp(x) = S(x) for fixed x with Sp(x) the partial sum.

m Uniform convergence. Inner closed uniform convergence. Uniformly bounded.
Absolutely uniform convergence.

Yongli Peng
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https://en.wikipedia.org/wiki/Arzela-Ascoli theorem

Review: functional series

m The ordinary convergence in functional series is pointwise convergence:
lim, Sp(x) = S(x) for fixed x with Sp(x) the partial sum.

m Uniform convergence. Inner closed uniform convergence. Uniformly bounded.
Absolutely uniform convergence.

= Some test method: Cauchy'’s test (uniform version); Weierstrass M-test.
Dirichlet’s test. Abel's test.
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https://en.wikipedia.org/wiki/Arzela-Ascoli theorem

Review: functional series

m The ordinary convergence in functional series is pointwise convergence:
lim, Sp(x) = S(x) for fixed x with Sp(x) the partial sum.

m Uniform convergence. Inner closed uniform convergence. Uniformly bounded.
Absolutely uniform convergence.

= Some test method: Cauchy'’s test (uniform version); Weierstrass M-test.
Dirichlet’s test. Abel's test.

m Arzela-Ascoli Lemma. Equicontinuity.
https://en.wikipedia.org/wiki/Arzela-Ascolitheorem

(The Lemma) Consider a sequence of real-valued continuous functions {fp},en
defined on a closed and bounded interval [a, b] of the real line. If this sequence is
uniformly bounded and equicontinuous, then there exists a subsequence {fy, }ken
that converges uniformly. The converse is also true, in the sense that if every
subsequence of {f,} itself has a uniformly convergent subsequence, then {f,} is
uniformly bounded and equicontinuous.
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Review

. functional series

The ordinary convergence in functional series is pointwise convergence:
lim, Sp(x) = S(x) for fixed x with Sp(x) the partial sum.

Uniform convergence. Inner closed uniform convergence. Uniformly bounded.
Absolutely uniform convergence.

Some test method: Cauchy'’s test (uniform version); Weierstrass M-test.
Dirichlet’s test. Abel's test.

Arzela-Ascoli Lemma. Equicontinuity.
https://en.wikipedia.org/wiki/Arzela-Ascolitheorem

(The Lemma) Consider a sequence of real-valued continuous functions {fp},en
defined on a closed and bounded interval [a, b] of the real line. If this sequence is
uniformly bounded and equicontinuous, then there exists a subsequence {fy, }ken
that converges uniformly. The converse is also true, in the sense that if every
subsequence of {f,} itself has a uniformly convergent subsequence, then {f,} is
uniformly bounded and equicontinuous.

Continuity preserving. Integrability preserving and integration calculation.

Differetiablity preserving and calculation (for differentiation, we can only use the

1st derivative to control the original function, the converse is always impossi e'%\ W‘
TR

*4
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Exercise

If 3=, an converge, does 3, a2 converge?
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Exercise

If 3=, an converge, does 3, a2 converge?

Find {an} and {bn} such that lim, Z—: =1/#0but > a, and > b, have different
convergence.
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Exercise

If 3=, an converge, does 3, a2 converge?

Find {an} and {bn} such that lim, Z—: =1/#0but > a, and > b, have different
convergence.

If 3, an < oo and b, = o(ay), is it true that > b, must converge?
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All of the above deduction is true for positive series. So the counter-example should
be given by general series, in which case the alternating series is one natural choice
(this is the only one treated specially in the textbook, too general series have nothing
different from the limit theory in Math.Anal I).

So the answer could be:

12. ap = (—1)"%.

13. by = an + o(an). o(an) diverge when a, converge, like a, = (—1)"# and

o(an) = %

14. Just use 13 and let b, = %, ap = (—1)"% here. O
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Exercise

19. Holder's inequality

p,q > 0 and % + % =1, > ,lanP and 3, |by|9 converge. Prove >~ anb, absolutely
converge and the Holder inequality:

Z lanbn| < (Z |an‘P)%(En )

1
q
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Exercise

19. Holder's inequality

p,q > 0 and % + % =1, > ,lanP and 3, |by|9 converge. Prove >~ anb, absolutely
converge and the Holder inequality:

Z lanbn| < (Z |an‘P)%(En )

1
q

18. Minkowski's inequality

p>0, >, lan|” and >, |bn|P converge. Prove the following inequality:

S lan+ bal?)? < (3 Jaal?) 7 + (3 1al?)

o=
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Proof of the Holder

For the Holder's inequality, we just need to take the limit of the finite Holder's
inequality.

For the finite version, we need a auxiliary inequality:
Xyt <tx+ (1—t)y, YO<t<1,xy>0 (1)

.. . _ lanl® _ | b | _ 1 .
Once this is proved, just let x = S lanpP y= S Tba]d and t = = (notice that

% + % =1). Then the inequality becomes:

|an | bn| <1 lanf? +} | b9
(S |anP)? (3 |bale)s P2 2alP a2 [bnl7

Finally we sum up the above inequality w.r.t. n and the right hand side becomes
% ar % = 1, which derives the Holder's inequality. O
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Proof of the auxiliary inequality

We can use the Jensen's inequality to prove the auxiliary inequality (1).

Jensen’s inequality

For a real convex function ¢ , numbers x1, x2, ..., X, in its domain, and positive
weights a; with -7 | a; = 1, Jensen’s inequality can be stated as:

(> ax) <> aip(x),

where n can be finite of infinite (series). Moreover, this inequality can be generalized
to integration (you can treat integration as uncountable summation where you
summed up numbers indexed on the real line). The integral version is:

o (5 / e < o [ et

for any f: [a, b] — R being a non-negative integrable function and ¢ is convex (note
here the finite interval [a, b] is necessary).
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Proof of the auxiliary inequality

Jensen’s inequality (continuation)

More generally, rather than using uniform weights, we can use arbitrary weights in the
integral version:

90( /. f(x)g(x)dx) < [ e(no)etods

where f(x) is a non-negative integrable function, ¢ is convex and g(x) is a
non-negative function with fR g(x)dx = 1.

In the previous case just let g(x) = ﬁl[a,b] being constant on the interval [a, b].
From https://en.wikipedia.org/wiki/Jensen/,27s_inequality

Convex function

The original definition for a convex function is:
Let X be a convex set and a function f: X — R is called convex if it satisfies:

Vx1,xg € X,Vt e [0, 1} ¢ f(txa + (1 — t)xe) < tf(x1) + (1 — t)f(x2)

(from https://en.wikipedia.org/wiki/Convex_function) U
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Proof of the auxliary inequality

Convex function

There are some good properties for a convex function:

= A convex function f of one real variable is continuous (Lipschitz-continous) except
on the endpoints,
admits left/right derivatives and these derivatives are monotonically
non-decreasing (this means at most countable points are indifferentiable).

= (star) A differentiable function of one is convex if and only if

fx) 2 fly) + 1 () (x = ¥),

for multi-variable case x,y € R", this becomes

fx) > fly) + V) (x = ),

= (star) A twice differentiable (C?) function f of one variable is convex on an
interval if and only if £/ > 0. For multi-variable case, the Hessian matrix (V?2f)
shall be non-negative definite, that is, for any u € R", we have u™V2fu > 0.

m From https://en.wikipedia.org/wiki/Convex_function. The last two
property is used more frequently.

Remark: Convex optimization and convex analysis is particularly useful machine U
learning.
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Proof of the auxliary inequality and Minkowski's inequality

So first we can take the logarithm on both sides, which leads to
tinx+ (1 —t)Iny <In(tx+ (1 — t)y). (2)

Taking the twice differentiation of Inx, (Inx)” = —X% < 0, so it's concave and — In x
is convex.

The Jensen's inequality tells us — In(tx+ (1 — t)y) < t{—Inx] 4+ (1 — t)[—Iny]. So (2)
is true and the auxiliary inequality follows from it.

Finally we attempt to prove the Minkowski's inequality using the Holder's inequality.
Z |an + bn‘P = Z |3n + anan + bn|p_1
<> lanllan + balP™ + D |bullan + ba|P~! (triangle’s inequality)
1 1
< lanl?)? (D lan + bal 9P~ )T 4 O lbalP)? (Z\aner |9(p=D)q

*(Z‘aﬂp 2’ Z|an+bn|p)1_7 (Z|bn|p)5(2|an+bn‘p) _”
(q(p71)=pand5=1*1) W-

P
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Exercise

an > 0and 3, L converge. Prove the series 3 converge.

an

—M
nay+---+an

Proof.

Use the answer in the textbook as a hint.

1. If {an}n is monotone, since 3, i converge, we need i — 0, which means
an — 00. So we must have {an} is increasing. In which case, we can have the
following derivation:

n n n 2
< £ = =
apt+az+---+an 3L%J+“‘+an a1 ajn

2

(if you use a2, in this case, just like HW, you shall mention the odd case).

2. If {an} is not monotone. Then let by, ba, - - - , by be the rearrangement of the
original a1, a2, -+ ,ap with by < by < --- < bs. For convenience we let n = 2m here.
Then we can derive:
n n 2
ap+tazx+---+an b1 +bay+---+ by bm
where the last inequality follows from the case 1. U
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Proof of 22

We sum the above inequality (3) up to n = 2m and obtain:

2m f 2m m 4 m4
;al+ag+...+ai§;7:;E ;;

where the intermediate equality is because almost every b; is summed twice (you may
need more subtle discussions of the beginning terms), and we need to relax the
summation from m terms to 2m terms because we don't know where by, ba,--- , by

lie in the original sequence aj, az,- -, a,. The safest way is to use all of them to
control the summation of b,.
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Proof of 22

We sum the above inequality (3) up to n = 2m and obtain:

2m f 2m m 4 m4
E—a1+az+...+a,§§j:§z 25

where the intermediate equality is because almost every b; is summed twice (you may
need more subtle discussions of the beginning terms), and we need to relax the
summation from m terms to 2m terms because we don't know where by, ba,--- , by
lie in the original sequence aj, az,- -, a,. The safest way is to use all of them to
control the summation of b,.

Remark: 1. Since b1, b2, - , by is just an rearrangement of the original

ai,as,--- ,an, we cannot direct control the series Zf’o m but need to cope
with the partial sum.

2. Since the above inequality is about the summation and we will take a limit

afterwards, we don't need to discuss the odd case here.
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Proof of 22

We sum the above inequality (3) up to n = 2m and obtain:

2m f 2m m 4 m4
E—a1+az+...+a,§§j:§z 25

where the intermediate equality is because almost every b; is summed twice (you may
need more subtle discussions of the beginning terms), and we need to relax the
summation from m terms to 2m terms because we don't know where by, ba,--- , by
lie in the original sequence aj, az,- -, a,. The safest way is to use all of them to
control the summation of b,.

Remark: 1. Since b1, b2, - , by is just an rearrangement of the original

. . oo i
ai,as,--- ,an, we cannot direct control the series Zi e i but need to cope
with the partial sum.
2. Since the above inequality is about the summation and we will take a limit
afterwards, we don't need to discuss the odd case here.

Finally we let m — oo and get > ° m <43 al < 0. O W‘
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Exercise

If fo(x) = f(x) and gn(x) = g(x) on some interval I, {f,} and {gn} are uniformly
bounded, then on | we have f,(x)gn(x) = f(x)g(x)
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Exercise

If fo(x) = f(x) and gn(x) = g(x) on some interval I, {f,} and {gn} are uniformly
bounded, then on | we have f,(x)gn(x) = f(x)g(x)

10.16
Prove the functional sequence f,(x) = (1 + %)" uniformly converge in [0, 1] and
calculate the limit:
L X
lim / (14 =)"dx
0 n

n— oo
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Exercise

If fo(x) = f(x) and gn(x) = g(x) on some interval I, {f,} and {gn} are uniformly
bounded, then on | we have f,(x)gn(x) = f(x)g(x)

10.16

Prove the functional sequence f,(x) = (1 + %)" uniformly converge in [0, 1] and

calculate the limit:
L X
lim / (14 =)"dx
n—oo [ n

fa € Rla, b] and f,(x) inner closed uniformly converge to f(x) on R, there is a function
g(x) satisfying |f,(x)| < g(x) and [ g(x) < co. Prove f(x) € R(—00,0) and

Ii’rIn/an(x)dx:/RIiT f,,(x)dx:/Rf(x)dx
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Proof of 10.8

10.8.  We just use the cutoff(Z{#f) trick:

|fa(x)&n(x) = fX)8(x)| = |fa(x)8n(x) — fx)&n(x) + f(x)&n(x) — Ax)&(x)]
< fa(x) = ) |gn ()] + [f(x)|1gn(x) — &(x)]

Since fpn, gn are uniformly bounded, we assume IM s.t. |f(x)| < M and |gn(x)| < M.
Let n — oo and we can get |f{x)| < M and |g(x)| < M (this only needs pointwise
convergence).
Then by the uniform convergence, Ve > 0,3N > 0 s.t. |[fo(x) — fiX)| < 55; and
lgn(x) — g(x)| < 5% for Vn > N.
It follows that . c

1509803 — g0 < oM+ M=

for any € and x € . Let € — 0 and we get f,(x)gn(x) = f(x)g(x). O
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Proof of 10.16

First we just take the limit for a fixed x and obtain lim,(1 + >)" = €*. Then it's
reasonable to expect the functional sequence will also uniformly converge to €*.

Since [0, 1] is a closed interval and €* is continuous on it, it's also uniformly continuous
on it, i.e., Ve > 0,35 > 0 s.t. Vx1,x2 € [0,1] and |x1 — x2| < &, then |l — 2| < e.

So we can first take a logarithm In f;(x) = niIn(1 + %) and test its convergence. By

Taylor's expansion, we have !
X X
Infa(x) = n(; + o(;)) = x+ xo(1)

By |x| < 1 is finite, |Inf(x) — x| = [x]o(1) < o(1) — 0 as n — co. More formally,
Ve, 3N s.t. ¥n > N, we have |o(x)| < |o(1)] < €.

Finally using the uniform continuity, we just let ¢ = § above and derive
|fa(x) — €| < € for n > N.
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Proof of 10.17

First we prove the integration fR f(x)dx by Cauchy's convergence test. Since
[fa(x)] < g(x), we have |f(x)| < g(x) by limitation. Then Ve,IM > 0 s.t. Vn,m > M

Jo T g(x)dx+ [ g(x)dx < €, which leads to
| [ fx)dx+ [ f(x)dx] < [ |f(x)|dx+ [7|f(x)|dx < e. So by Cauchy’s
convergence test, we have [, f(x) < oc.

limy [ fa(x)dx = [ f(x)dx follows similarly:

|/ fn(x) dxf/ fn(x)dx]| </ |fa(x)|dx + /_7 \f(x)|dx+/ x)|dx+/ [f(x)]dx
+/_M|fn(x)ff(x)|dx

By the same discussion, Ve > 0,3M s.t. the first 4 terms above are all less than e.
The last term is controlled by the uniform convergence: we can find n Iarge enough
sit. [fa(x) — Aix)| < 55 So we have | [ fa(x)dx — [ fa(x)dx| < 4e 4 55;2M = 5e.

Finally let € — co and we get lim, [ fa(x)dx = [ f(ix)dx. W‘
O
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Exercise

10.21

(1) fis differentiable on I, f(x) is uniformly continuous on /. Prove
Fn(x) = n[fix+ %) — f(x)] uniformly converges on I.

(2) Prove fo(x) = n(4/x+ % — \/x) inner closed uniformly converge on (0, +o0) but
not uniformly converge on it.
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Exercise

10.21

(1) fis differentiable on I, f(x) is uniformly continuous on /. Prove
Fn(x) = n[fix+ %) — f(x)] uniformly converges on I.

(2) Prove fo(x) = n(4/x+ % — \/x) inner closed uniformly converge on (0, +o0) but

not uniformly converge on it.

10.26
fa(x) is continuous on [0, 1], and pointwisely converge to f(x). Then f,(x) = f(x) if
and only if fo(x) are equicontinuous on [0, 1].
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Proof of 10.21

10.21.(1)
Notice here F,(x) looks like the definition
replace the increment h by % so it shall converge to f(x).

M of the differentiation when you

Since f(x) exists, we can apply the Lagrange Mean Value Theorem and get

Fn(x) = f(x+ %) where 0 € [0, 1] and depends on x. But we have the uniform
continuity of f(x) on I, so when n is large enough s.t. |%| < % < 6 (8 is the one used
in the definition of the uniform continuity), we have |F,(x) — f(x)| < €. This implies
Fn(x) = f(x).

10.21.(2)

By the above discussion, we know the singularity only occurs at the endpoint, that is,
0 and oco. So the counter-example should converge to these two values. By the
Cauchy’s convergence test, we need the example satisfies: Je, VN, we can find

n,m> N and x € (0,00) s.t. |fp(x) — fm(x)| > €.

We just choose n > N, m = 2n and x = %, then

[fa(x) — fm(x)| = [(v/2 — 1)v/n — (/6 — 2)3/n| — o0 as n — oo. O W‘
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Proof of 10.26

First we prove the necessity.

Since f€ ([0, 1], it's also uniformly continuous on it. So Ve’, 380, N s.t. whenever
|x1 — x2| < 8p and n > N, we have |f(x1) — f(x2)| < € and |fa(x) — f(x)| < € for any
x € [0,1].

Therefore for any n > N, we have

[fa(x1) = fa(x2)| < [fa(x1) — fix)| + [fix1) — f(xe)| + [fa(x2) — fix2)]
<€+ +€ =3 V|x1 — x2| < 8o, n > N

Since f, is also continuous on [0, 1], they are uniformly continuous. Hence we can find
01,02, -+ ,0n s.t. V|x1 — x2| < 0; we have |fi(x1) — fi(x2)| < e. Finally we let

e = 3€’,6 = min{do,d1,--- ,dy} and we derive the equicontinuity of {f,} on [0, 1]:
whenever [x; — x2| < § we have |f5(x1) — fo(x2)| < € for any n € N.

Then we prove the sufficiency.

Since {fa} is equicontinuous, we can find §, such that whenever |x1 — x2| < § we have
[fa(x1) — fa(x2)| < € for any n € N. We can then give a finite partition of [0, 1]:

0=ty <ty < <tpy=1with |t — ti1] < J. Since [0, 1] is finite, such a finite

partition is possible. O W.
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Proof of 10.26 (Continue)

V0 < i< k, since f, pointwisely converge to f(x), by Cauchy's convergence test, we
can find N s.t. Vm, n > N; we have |f(t;) — fm(t;)] < €.

Since k < oo, we can let N = max{No, N1,---, N¢} and obtain N < oco.

Then Vx, it must lie in some interval, assume t; < x < tj11. Since

|x — tip1| < |ti — tix1] < 8. We have |f(x) — fa(tit-1)| < € for any n € N. So for any
n,m > N, we have

[fa(x) = fn ()] < Vfa(x) — fa(tig1)] + [fa(tig1) — fm(tipr)] + [fm(X) — fm(tig1)]
<€e+e+e=3e

Finally by Cauchy's convergence test we obtain f, = f.

Remark: Actually you can also prove the uniform convergence directly without Cauchy,
just combine the equicontinuous & and f's uniformly continuous &’ togenther. O
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Exercise

exercise outside the book

If {an} is decreasing, lim, a, = 0 and the seq {on = Y }_;(ak — an)} is bounded, then
>3- a, converge.
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Exercise

exercise outside the book

If {an} is decreasing, lim, a, = 0 and the seq {on = Y }_;(ak — an)} is bounded, then
>3- a, converge.

If {an} is increasing and bounded, a, > 0, then >_°°(1 — —22) converge.

ant1
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Exercise

exercise outside the book

If {an} is decreasing, lim, a, = 0 and the seq {on = Y }_;(ak — an)} is bounded, then
>3- a, converge.

If {an} is increasing and bounded, a, > 0, then >_°°(1 — —22) converge.

ant1

If {an} is increasing and lim, a, = oo, then > 7°(1 — 8211) diverges.
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proof

1. Just notice somewhat tricky relation:

n

n m
on = Z(ak* an) = Zak* nap > Zak*mam
k=1 k=1

k=1

for m < n, where the last inequality follows from >")_ | ax > (n— m)an. So
ZT:l a, < map + o,. Since lim, ap, = 0 and o, bounded, when we let n — oo, we
have Y77 | ax is bounded.

But from {a,} decreasing and lim, a, = 0 we know this is a positive series and so we
get its convergence.

2. Just notice
M

1
-2 < —(am—am) <
n—m an+1 am

€
L—e

where lim, a, = L (the existence follows from {a,} increasing and bounded), ¢ is
chosen arbitrary. We know when m, M is large enough we can make ay — am < € and

L—e
and then choose suitable threshold N. O

am > L — e for any € > 0.
By Cahuchy’s convergence test Ve’ we just choose € small enough such that < < ¢’ W.
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Just notice:
n+p
an 1 an
DB IS e
— ant1 antpt1 antpt1

and when p — oo with n fixed, we have ay4p+p — 0o and the right hand side tends to
1.
So by Cauchy's convergence test, Je fixed, VN we just let n= N+ 1 and p large

enough to make 1 — —22— > ¢
antp+1

Thus the series diverge. O
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Something | want to mention...

There's something | want to mention further, which are questions students asked after
the class and | think it's important.

m Somebody asked me a question on the textbook: determine the convergence

property of S°1°% (G ladil 1) (p > 0).
This can be done when you add up the terms with the same sign.

2 2 2
4k%+-8Kk+3 (=)l B U3tk UC8RE3 y Ak 41 Ak +3
n=4k2 ne iz k=4k2 4 4k+1 P Ak Ak +1)%
1 1 N 1 " 1
Tokeeml (k4 1)20-1 0 k2P (k4 1)2P
—1)lvnl
So it's easy to prove the convergence of Z4k2 ! % when p > % if you add

the above inequality up to k. This forms a convergent subsequence {S,, } of the
2

partial sum {S,}. Since |S, — S5, | < z§i4t28k+3 # < i’j}f — 0, this shows the

convergence of the original sequence {S,}.

1 ' 4KP+4k 1 4k+1
For p < 5, by Cauchy’s convergence test, Zn:4k2 e kD)% should

approximate to O if it converge.

But this is impossible, so it diverge when p < 1

-
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Something | want to mention...

m For the absolute convergence, the critical value 1 is easily found and be verified.

m For 22, somebody said it can be done by a total rearrangement of {an}. | think
it's okay to prove it in this way.
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