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Today's exercise and homework

For homework,
m Take your homework from the front desk.

= HW for the last time (to be returned): Exercise 11. 6. (3), (7), (11), 8, 9, 11,
14, 18

= HW this time (to be handed in): Exercise 12. 1. (1), (5), (7); 2. (3), (4); 3. (1);
6. (1), (2), (5); 8; 10; 12; 13

m And there's some HW hasn't be taken in the last two class. If you want it,
remember to take it.

For exercise,
m Exercise 11. 12, 13, 15, 17
m Exercise 12. 4,5, 9, 11, 14

m (more tricky) Exercise 9. 20.
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Last time's HW

11.11

Assume the power series f(x) = E,T:(Xf an(x — a)" have convergence radius r, for
Vbe (a—ra+r), welet ¥ =min{b—a+r,a+r— b} Prove

+o0o
flx) = > ba(x—b)", x€(b—",b+7)
n=0

where b, = ZZ':OS (ﬁ)ak(b —a)k="(n=0,1,2,---).

Remark: It's easy to verify if ¥ = min{b—a+r,a+r— b}, then (b—r,b+7r) C
(a—r,a+r). But you cannot directly say it’s (uniformly or absolutely) convergent and
you can exchange the summation order, which is just the thing you need to prove! In
order to exchange the order, you need something like absolutely convergence. Uniformly
convergence is not enough, since you can treat a convergent number series as a func-
tional series independent of x. Because it's convergent, it's also uniformly convergent
as a functional series. But it's easy to find a counterexample to make the order not
exchangeable. So you may need something like absoltely convergent.

Remark: One possible way is to use the theorem 11.1.1 in your textbook: if the power
series Y anx” converge at xp # 0, it's inner closed absolutely uniformly convergent in
the interval (—|xol, |xo0])-
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Proof

More formally, for finite summation we have

Zan(x—a)":Zan(X—b—l- b—a)"

S

an (X—b)k(:)(b—a)"*k (0<k<n<Nn>1)

> st (- a1

The terms are indexed in a 2 dimensional form, so you have different ways to add the
terms up. With the above identity, the remaining part is just to prove the limitation
can be taken: N — oo, which means the tail terms (from N to co) can tend to 0 as
N — 0o, no matter how you add the terms up. So a natural way to prove it is to
ensure absolutely convergent. So you need to prove at any fixed x€ (b—r,b+r),
the series is absolutely convergent. O
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So the trick is, let S(b.x) = 3°0% k<, an(x — b)*(7) (b — a)"~* be a series, we want to
prove its absolutely convergence, actually we can find X, b’ such that

[x—bl=x —b>0and b’ —a=|b— a| > 0. For instance, if b < a,x < b, let

b =2a—band ¥ = b + (b— x) = 2a— x. X still lies in the convergent domain.

Use thm 11.1.1 we know > o2, an(x — a)" is absolutely convergent at X' (choose xo a
little large than X, X — a < xo — a < r). Then its absolutely convergence implies the
absolute convergence of S(b’,x') with 2 dimensional index. So we can exchange the
order and prove the problem. O
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Last time's HW

11.18

If f{x) can be uniformly approximated by polynomials in (a, b), it's uniformly
continuous in (a, b).

= We just need to prove the limit limy— .+ f(x) and lim,_,,_ f(x) exist. Then make
an extension fof ffrom (a, b) to [a, b]: f= fon (a,b) and

f(a) = limy_s 21 A(X), A(b) = limy_,p_ f(X).
= We have a uniform approximation {P,} of f(x) in (a, b).

» First we need to prove the sequence {Pn(a)} does have a limit, where we use the
Cauchy criterion:
|Pn(a) — Pm(a)| < |Pn(a) = Pa(x)| + |Pm(a) = Pm(x)| + |Pn(x) = Pm(x)|.

m Since Py(x) is continuous at a, Ve, 3x > a, s.t.|Pn(a) — Pn(x)| < €, so does Pp(x).
Then the first two terms is done.

= For the last term, use the uniformly convergence, we have {P,} is a uniform
Cauchy’s sequence in (a, b), which means Vx € (a, b), we have
|Pn(x) — Pm(x)| < € for large enough n, m.

» Hence Ve, 3N, s.t. ¥n,m > N, we have |P,(a) — Pm(a)| < 3e. This is just the
Cauchy'’s criterion and so the sequence {P,(a)} converge.
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m {Pn(b)} converge follows in the similar way as above. We assume A = lim, P,(a)
and B = lim, Py(b).

» Then we want to prove f(x) — A. In fact, we have:
1) — Al < [fx) = Pa(x)| + [Pn(x) = Pn(a)| + [Pn(a) — Al.

= The middle term still follows the continuity of P, at a. The first term is
controlled by the uniform convergence of P, — fin (a, b). The last term is what
we have proved: A = lim, P,(a). So we have f{x) — A as x — a+.

= Similarly we have f(x) — B as x — b—. Finally make an extension f of f as |
mentioned. We have the uniform continuity of . So f(x) is uniformly continuous
in (a,b).

O
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. Power Series

®m Thm 11.1.1: Z" apx" converges at xp, then it's inner closed absolutely and
uniformly convergent in (—|xol, |x0])-

m Thm 11.1.2: Let p = limsup,_, |a,,\% and R is the convergent radius for power
series Y, anx”, then (1)If p=00, R=0, (2)If p=0, R=00, (3) If 0 < p < o0,
R=1

>
[ant1]

Ton] and we have similar
n

m Corollary: The above p can be replaced by p = lim,
results.

® Thm 11.2.1 (Abel): If the convergence radius for 3 anx” is R, then (1) it's inner
closed uniformly convergent in (—R, R).(2)If >, a,R" converges, the power series
is uniformly convergent in any closed interval inside (—R, R].(3)If 3_ an(—R)"
converges, the power series is uniformly convergent in any closed interval inside
[—R.R).

= f(x) = >.02, an(x — a)" is continuous in convergence domain as a function, the
infinite summation can exchange with the integral with respect to x. If the
convergence radius is R, it can be differentiated arbitrary in (xo — R, x0 + R), i.e.,

n)

it's smooth in that interval. So we have a, = w

= Weiestrass: for any function f€ (Cla, b], we can find a series of polynomials
{Pn}n>1 s.t. Pn =3 fin [a, b].
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Review. Fourier Series

m The origin of Fourier series is

J7, sin(mx) sin(nx)dx = 0 when m # n and = m when m = n.

J7, cos(mx) cos(nx)dx = 0 when m # n and = 7 when m = n.

ST sin(mx) cos(nx)dx = 0 for any m, n.

So if f(x) = %0 + 3", ancos(nx) + bpsin(nx), use the above identities we can get
L [T f(x) cos(nx)dx = ap and L [ f(x)sin(nx)dx = b,. Actually, {sin(nx)}
and {cos(nx)} form a orthogonal basis for function space, if you define the inner
product to be (f,g) = + L [T f(x)e(x)dx.

For finite dimensional Ilnear space in linear algebra you have any vector can be
represented as a linear combination of the basis. But in infinite dimensional
space, you cannot always have this property. Even if you find a series of
orthogonal functions, it's hard to justify that any function can be represented as a
linear combination of those orthogonal ones.

m The actual meaning of above infinite linear combination is: you can find a series
>~ anen whose partial sum can approach any given function, where e, are those
orthogonal functions.

m A function space without any restriction is not possible to do the above things.
One possible example is to consider functions with [ £(x) < co. Then {sin(nx)}
and {cos(nx)} forms a possible series of orthogonal functions with the above
property, if you consider the “approach” as convergence in the mean square:
gn — fmeans [ |f— gn|2dx — 0.
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Review.

Yongli Peng

Fourier Series

The Fourier coefficients can be calculated in the previous slides.

L[ f(x) cos(nx)dx = ap and L [ _f(x)sin(nx)dx = by for any function. But
the convergence needs to be proved, here you can only write

fr 2 437, ancos(nx) + by sin(nx).

The Fourier coefficient and the Fourier series is not changed if you change finite
values of the original function.

(uniqueness) If f is continuous and 27 period, a, = b, = 0 implies f= 0.
(Riemann-Lebesgue Lemma) If f is integrable on [a, b] or absolutely integrable at
its singular point in [a, b], then f f(x) sin(x)dx — 0 and f x)sin(x)dx — 0 as
A — 0.

(Riemann localizaion) The convergence of the Fourier series at xp only depends
on the value of fin the neighborhood (xp — 8, xo + ) of xo, V& > 0.
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Review. The convergence of Fourier Series

m The main idea to prove the convergence is to use the Riemann-Lebesgue Lemma.

m Calculate the partial sum of the Fourier series when putting into the formula
calculting the Fourier coeffients:

Sn(x) = 3—20 + Z(akcos(kx) + by sin(kx))
k=1

= % /_: f(t)dt + % /_7; f(t) cos(nt) cos(nx)dt + %/_: f(t) sin(nt) sin(nx)dt

sin(n + %)t
25in§

1 ™
=[x+ )

m So to prove S, — S, we just need to prove

f(x+1)+Ax—t)—25 _.
0 %ﬁ(;)osm(wr 1)tdt — 0. Note [™

sin(n+%)t _
™ 27rsin(§t) dt=1
1

= By Riem-Leb Lemma we have (™ (; — ﬁ(l))sin(n—k Dytdt — 0as n— 0. So
2

use the previous result and changing the variable we can obtain: fR Wdt =.
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Review. The convergence of Fourier Series

m So to use the Riemann-Lebesgue Lemma, we just need to justify when will the
W be well-behaved, that is, integrable or absolutely

2
integrable at singular point.

function

It's easy to see 0 is a possible singular point. So we need the function to have
some great property to compensate this singularity at 0. Moreover, we need only
f(x£t)—So 1_ 1

t t 25in(%) )

to consider , since the singularity is cancelled for
m Then various deduction can be referred to your textbook. Here just list the
results (p(t) = fix+ t) + f(ix— t) — 250):

m If fis piecewisely differentiable, we have S,(x) — w, where f(x £ 0)
denotes the left (right) limit of f at x.

m (Dini) fis integrable on [—m, 7] or absolutely integrable at singular point,

Vxo, 38 > 0, s.t. fo‘s Mdt < o0, then S,(x0) — So.

(Lipschitz) f is integrable on [—m, 7] or absolutely integrable at singular point,

|fxo +t) — fixo)| < L|t|* Vt € (xo — &, x0 + &) (cv—Holder continuous), then

Sn(x0) — f(xo). (Holder continuous is a generalization of Lipshitz continuous, and

stronger than merely continuous, as we have mentioned, continuous is not enough to

ensure the convergence of Fourier series, there's a counterexample).

(Dirichlet) f is integrable on [—, 7] or absolutely integrable at singular point, if f is

monotone on (xg — &, xo) and (xg, xo + &) where xq is not a singular point, then

Sn(XO) N f(xofo);»f(xo#»o).

m More generally, piecewisely monotone is also sufficient (Jordan).
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. The convergence of Fourier Series

m Sometimes we cannot prove the convergence, we will take a step back, consider
some weaker form: does arithmatic average W — f(x)? Similarly
replacing the coefficients and after tedious calculation, we get Fejer kernel ®,(t)

and S0ESUEdSn — L (T fi i 6)B(t)dt.

m Typically you cannot use the previous knowledge to prove the convergence of
Fourier series. This series is a special one. We not only want it converge, we also
link the converging result with the original function. But 12.3.1 says the
pointwise converging series with the original function f being continous and
27 —periodic ensures the series converge to f.

m We can also consider the mean square convergence and the uniformly
convergence of Fourier series, [ |S, — fl2dt and S, = f.

= The mean square convergence is the easiest to satisfy. If f is integrable on [—7, 7]
or absolutely integrable at singular point, then f:r |Sh — f2dt — 0. As a

corollary, we have the Parseval’s identity: é +3> (a2 4+ b2) = %ffﬁ £ (x)dx.
And more genral Parseval's identity:

% + >, (anan + bnfn) = % ffﬁ f(x) g(x)dx.

Since it's derived from the mean square convergence, we don't need the series
converge for above results.
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Review. The convergence of Fourier Series

m If fis 2r—periodic and f(x) exists and integrable on [—m, 7], then S,(x) = f(x).

m If £/ exists and integrable on [—, 7], then we can differentiate termwise:
f(x) = >, (nbpcos(nx) — nasin(nx)). But the relation between the Fourier
coefficients don't need 2—order differentiation, just integrate by parts.

= If f is integrable on [0, 27] and 27 —periodic, then we can integrate termwise:

Jo ft)dt = 2% 4+ 37 (22 sin(nx) + MO)
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Exercise

11.12

If the positive series Zn>0 an diverge, the power series Zn>0 anpx" has convergence
radius 1, then limx_1_0>,_( anx" = co.

Proof.
Let f{x) =3, anx" be the power series, with domain x € (—1,1). We want to prove
limyx—1—0 f(x) = 00. So we need YM > 0 to find § such that when 1 — x < § we have

fx) > M.
Since we have the inequality (when x is near 1, it must be positive and so each term in

the series is positive):
N
fx) = Z anx" > Z anx"
n n=0
N
> Z an(1 —6)" (each term is positive)
n=0

N
> Z an(1 — nd) (Bernoulli's inequality)
n=0

June 26, 2020
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Proof.

Since D, an = 00 (a positive series can only be co or converge), for the same M, we

can find Ny, s.t. Z Ly an > M+ e for some fixed e. Then for that Ny, 1o Nan is
finite, so we can find 5 small enough so that § < %
—0 Nan

Finally for the above inequality let N= N;j and we obtain:

f(x) > Zn 0an— (Z 1o Nan)d > M+ € —e = M. And this inequality is true for any
> (1 —6), so this proves limy—1_g f(x) = co. O

11.13

If f(x) (not a constant) can be expanded as a power series at any point in xg € (a, b)
with a positve radius r > 0. Prove the zero set of f(x) in (a, b) does not have
accumulation points.
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Proof

Since f(x) can be expanded as a power series at any xp € (a, b) and f nonconstant,
which implies the series cannot be = 0. Otherwise we have f= 0 on certain interval,
then expand f as a power series at the endpoint of that interval we can extend the
interval to get a larger interval on which f= 0. Repeat this process and finally we can
only have f= 0 on (a, b), which contradicts our assumption.

Then if the zero set of f has a accumulation point xg, we can derive the power series
for fexpanded at xp must be f= 0, which contradicts our previous argument. To
prove this, notice the power series expanded at xp is just the Taylor expansion of f at
X0, SO we just need to prove the n-th differentiation A" (x0) = 0 at that point. Which
can be done using mean value theorem.

First since xp is accumulation point, there is a seq of {x,} with f(x,) =0 and

Xn — Xo. Since f can be expanded as a power series at xg, f € C°° near xg. So it's
continuous, and we have f(xg) = 0.

Then for each [xj_1, x| (assume xj_1 < x; without loss of generality), since

f(xi—1) = fix;) = 0, we get a point X,-1 € [xi—1, x;] with f’(xl.l) = 0. This can be done
for each i. For the inequality: xi_1 < x,.1 < x; (or the converse direction) we have

Ix} — x0| < max{|x; — xo0|, |xi—1 — x0|}. Take a limit and we get x} — xp with

f(x}) = 0. Hence f (x) = 0. O
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Proof

Repeat the above process and we can get {x?}, {x?}, -+ with f2)(xg) = 0, f%)(xo) =
0,---. So the expansion at xp must be identical to zero, which gives a contradiction.

11.15

If f(x) is continuous on [0, 1] and satisfy:

1
/ f(x)x"dx=0, n=0,1,2,---
0

Prove: fix) =0 on [0, 1].

Proof.

Since fol f(x)x"dx = 0 for any n, we get fol Pn(x)f(x)dx = 0 for any polynomial P,.
But since fis continuous on [0, 1], use the Weiestrass approximation theorem and we
get a seq of polynomials {P,} with P, =% . And so the limit can be taken into the
integral and we get:

Iim/f(X)P,,(x)dxz/lim f(x)P,,(X)dx:/f(x)de

But the left hand side is always 0, so we get [ f(x)2dx=0. Thus f=0o0n [0,1]. [
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Exercise

11.17

If f(x) can be approximated uniformly by polynomials on an infinite interval, prove f(x)
must be a polynomial too.

Proof.

Since f(x) can be approximated uniformly by a series of polynomials. First we prove
the degree of the polynomials must be equal as n is large enough. Then we prove each
coefficient of order k will be unchanged as n is large enough. Combining these two
results the limit f(x) will only be a polynomial.

1. degP, must be unchanged. Suppose the infinite interval is just (b, c0) without loss
of generality. Then we have |P, — Pn| < € for x > b and some N > 0 with n,m > N
by Cauchy’s criterion. Then P, and P, must have the same order, otherwise when we
let |x| — oo, g—" — 00 if degPn > degPm. But from |Pp, — Pm| < € we have

m
|% -1 < ﬁ — 0 and so \E—"| must be bounded, which is a contradiction.
2. In a similar way we can prove the coefficients of the same order must by equal for
large n. From above discussion we have % — 1 as |x] — oo. a
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Exercise

Proof.
If we assume degP, = degPm = d, Pn(x) = E?:o aix' and Pm(x) = 27:0 bix, then
Pn _ 24 _

the above limit implies 2 = by = as [x| = 00. So ag = by and this term is
m

eliminated in |P, — Pm|, which derives two d — 1-th degree polynomial. Apply the
above process repeatedly and in finite steps we can get a; = b; for any 0 < i< d.

Since the above steps only runs in finite steps, eventually we can get a finite threshold
N s.t. Vn,m > N, we have P, = Pp. Thus, f can only be a polynomial. O

11.20
If f is continuous on [0, 1], Vn € N, define:

Bt = > ()7 () a0

k=0

Prove: By(f,x) = f(x) on [0,1] (Bn(f,x) is called the Berstein polynomial of degree n,
it gives a concrete polynomial approximation of any continuous function, which can be
used in computation).
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Exercise

First notice >_7_, (7)X*(1 — x)"~% = 1. In the probability, if you think x as the
probability one trail succeeds. Then (Z)xk(l — x)"~K is just the probability that in n
trials there is exactly k trials succeed. Then assume you are doing an experiment and
you are observing the number of trials that succeed in these n trials. Once you get an
observation k, you make a further calculation and obtain a quantity you are interested:

%) So 3, (Z)f(%‘) xK(1 — x)"~* is just the averaged value you can get from the
above experiment, observation and calculation. And f(x) is actually the real value you
desired, since ’—; you used in the calculation is just the frequency of the success trial, in

probability we have % — x (frequency will approach probability) in some sense.
Therefore By(f, x) = f(x) is natural.

To prove the argument formally, first we only need to prove
Yheo (D) (f(f) - f(x)) x¥(1 — x)"=k — 0. But since f is continuous, we have a § > 0

s.t. if \% — x| <48, we have |f(%) — f(x)| < € and this part is done. The annoying part
is the remaining one: Z\k—nx|>n5 @ (f(%) — f(x)) XK1 — x)n—k O
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Exercise

A few calculation concerning combinatory gives: > i_, (}) kxk(1 — x)"=% = nx and
Sheo (D k(k—1)x*(1 = x)"=k = x%n(n — 1). So we have

> k=0 (Z)(’ﬁ —x)2xK(1 — x)"k = X(li;x) which is just the variance you learned in the
high school. But this can help us to control the remaining terms:

A= Z (n)(f 21— Y (n)(lf =2 (1 = )"k
n par k/"n |k—nx|>né L

n e
> Y (PRa-xmhe
|k—nx|>né
SO > k—nx|>ns (Z)xk(l —x)"—k < % — 0, which means for € > 0 we can have n

large enough so that 3=, i< us @ <f(§) — f(x)) XK1 — X"k < 2/\/!% <e
where M = max,c(o,1] |f(x)|- This completes the proof. O
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Exercise

If (x) is 2r—periodic and f€ C?(—o0, 00), assume the Fourier series of f is:

“+oo
a .
f(x) ~ ?O + E (an cos nx+ by sin nx) .

n=1
Calculate the Fourier series for f(x) and f/(x) and prove 3C > 0 s.t.

C C

‘3n|<§7 |bn‘<ﬁ» n=1,2,---

Proof.

The Fourier series for f and f/ can be derived just from integration by parts:

f ~ 3" (nbycos(nx) — napsin(nx)) and £/ ~ >°(—n?a, cos(nx) — n?b, sin(nx)). Since

f’ is continuous and 2w —periodic implies f/ is bounded, we have

laf| = L] 7 £'(x) cos(nx)dx| < L [|f'(x)|dx < 2M, where M > |f'(x)|. So 3C > 0,
st |an| < %, |bal < % O
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Exercise

If f can be expressed as the difference of two monotone functions on [0, 27], its Fourier
series is denoted as:

a =
fx) ~ ?O + nEZI (an cos nx + bpsin nx) .
Prove: ap = 0(1),b,=0(2).

We just need to prove the case when fis monotone. And we just assume fis
decreasing. Then

1 21 1 2nm u
an = 7/ f(x) cos(nx)dx = — f(—)cosudu (u= nx)
@ n

™ nm Jo

— +/+

< D)~ )+ A5) = ) 4]

A
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Exercise

(k+1)m
Since fk,r 2 cosudu =1 when k is even and = —1 when k is odd, use the monotone
2

property we can derive the above alternating summation. To be precise, we get:
an < %[f(%) — f(2T’T) + f(37") — ---]. On the one hand, since fis decreasing, we have

f(@) > f(%) we have the right hand side RHS > 0. On the other hand, we
have f(#) > f(@) and we get RHS < ﬁ(f(%) + f(27)). Hence we get
Elp = O(%) The case for b, follows in the similar way. O

If fe C1[0,27] and f0) = f(2r), [ f(x)dx = 0. Prove
JoTIF 1 dx > [3T A1 2dx

Proof.
Just use the Parseval’s identity for f{x) and f(x). Notice the relationship between the
Fourier coefficients of fand 7. |
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Exercise

12.11

Prove there exists infinitely many Fourier series Z,LOB’ (an cos nx + bpsin nx) uniformly
converge to 0 on [—1,1].

Proof.

Just find functions equal 0 on [—1, 1] but ensure their Fourier series uniformly
converge. By theorems in the textbook we just need f(x) € R[—m, «]. A good choice
is to make f(x) continuous. So we just need to extend 0 on [—1,1] to [—, 7] so that
their first order differentiation will be consistent at the endpoint 1 and —1. Various
quadratic funtions may be good choice since their differentiation at the their extreme
point is zero.

A special case is e %2 This function is even and its arbitrary differentiaion at x =0 is
0, but itself is not 0, which means we can not only require the first order
differentiation to be consistent at the endpoint, but we actually can have any order
differentiation to be consistent. O
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Exercise

12.14

Assume f, g are 2w —periodic and integrable on [—7, 7]. Prove their Fourier series are
identical if and only if [7_[f(x) — g(x)|dx = 0.

Proof.

Just use Parseval's identity. f and g have identical Fourier series is equivalent to f— g
has all Fourier coefficients to be zero, which indicates [ |f— g|2dx = 0. But first by
Cauchy-Schwartz inequality, [™_|f— gldx < (/™ _|f— g]2dx)%-3(f”_dx)?>. On the
other hand, we have [”_|f— g|?dx < 2M [ _|f— g|dx where M > |f(x)| and

M > |g(x)| on [—m,m] (Riemann integrable indicates the function is bounded).

Therefore [T |f— g|?dx=0iff [T_|f— gldx =0 and this completes the proof. [
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