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Today’s exercise and homework

For homework,
Take your homework from the front desk.
HW for the last time (to be returned): Exercise 11. 6. (3), (7), (11), 8, 9, 11,
14, 18
HW this time (to be handed in): Exercise 12. 1. (1), (5), (7); 2. (3), (4); 3. (1);
6. (1), (2), (5); 8; 10; 12; 13
And there’s some HW hasn’t be taken in the last two class. If you want it,
remember to take it.

For exercise,
Exercise 11. 12, 13, 15, 17
Exercise 12. 4, 5, 9, 11, 14
(more tricky) Exercise 9. 20.
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Last time’s HW

11.11
Assume the power series f(x) =

∑+∞
n=1 an(x − a)n have convergence radius r, for

∀b ∈ (a − r, a + r), we let r′ = min{b − a + r, a + r − b}. Prove

f(x) =
+∞∑
n=0

bn(x − b)n, x ∈
(
b − r′, b + r′

)
where bn =

∑+∞
k=n

(k
n
)
ak(b − a)k−n(n = 0, 1, 2, · · · ).

Remark: It’s easy to verify if r′ = min{b − a + r, a + r − b}, then (b − r′, b + r′) ⊂
(a − r, a + r). But you cannot directly say it’s (uniformly or absolutely) convergent and
you can exchange the summation order, which is just the thing you need to prove! In
order to exchange the order, you need something like absolutely convergence. Uniformly
convergence is not enough, since you can treat a convergent number series as a func-
tional series independent of x. Because it’s convergent, it’s also uniformly convergent
as a functional series. But it’s easy to find a counterexample to make the order not
exchangeable. So you may need something like absoltely convergent.

Remark: One possible way is to use the theorem 11.1.1 in your textbook: if the power
series

∑
anxn converge at x0 ̸= 0, it’s inner closed absolutely uniformly convergent in

the interval (−|x0|, |x0|).
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Proof

Proof.
More formally, for finite summation we have

N∑
n=1

an(x − a)n =
N∑

n=1

an(x − b + b − a)n

=
N∑
n

an
n∑

k=0

(x − b)k
(n

k

)
(b − a)n−k (0 ≤ k ≤ n ≤ N, n ≥ 1)

=
N∑

k=0

N∑
n=max{1,k}

an(x − b)k
(n

k

)
(b − a)n−k

The terms are indexed in a 2 dimensional form, so you have different ways to add the
terms up. With the above identity, the remaining part is just to prove the limitation
can be taken: N → ∞, which means the tail terms (from N to ∞) can tend to 0 as
N → ∞, no matter how you add the terms up. So a natural way to prove it is to
ensure absolutely convergent. So you need to prove at any fixed x ∈ (b − r′, b + r′),
the series is absolutely convergent.
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Proof

Proof.
So the trick is, let S(b.x) =

∑∞
0≤k≤n an(x − b)k(n

k
)
(b − a)n−k be a series, we want to

prove its absolutely convergence, actually we can find x′, b′ such that
|x − b| = x′ − b > 0 and b′ − a = |b − a| > 0. For instance, if b < a, x < b, let
b′ = 2a − b and x′ = b′ + (b − x) = 2a − x. x′ still lies in the convergent domain.

Use thm 11.1.1 we know
∑∞

n=1 an(x − a)n is absolutely convergent at x′ (choose x0 a
little large than x′, x′ − a < x0 − a < r). Then its absolutely convergence implies the
absolute convergence of S(b′, x′) with 2 dimensional index. So we can exchange the
order and prove the problem.
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Last time’s HW

11.18
If f(x) can be uniformly approximated by polynomials in (a, b), it’s uniformly
continuous in (a, b).

Proof.

We just need to prove the limit limx→a+ f(x) and limx→b− f(x) exist. Then make
an extension f̃ of f from (a, b) to [a, b]: f̃ = f on (a, b) and
f̃(a) = limx→a+ f(x), f̃(b) = limx→b− f(x).
We have a uniform approximation {Pn} of f(x) in (a, b).
First we need to prove the sequence {Pn(a)} does have a limit, where we use the
Cauchy criterion:
|Pn(a)− Pm(a)| ≤ |Pn(a)− Pn(x)|+ |Pm(a)− Pm(x)|+ |Pn(x)− Pm(x)|.
Since Pn(x) is continuous at a, ∀ϵ, ∃x > a, s.t.|Pn(a)− Pn(x)| < ϵ, so does Pm(x).
Then the first two terms is done.
For the last term, use the uniformly convergence, we have {Pn} is a uniform
Cauchy’s sequence in (a, b), which means ∀x ∈ (a, b), we have
|Pn(x)− Pm(x)| < ϵ for large enough n,m.
Hence ∀ϵ, ∃N, s.t. ∀n,m > N, we have |Pn(a)− Pm(a)| < 3ϵ. This is just the
Cauchy’s criterion and so the sequence {Pn(a)} converge.
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Proof

Proof.

{Pn(b)} converge follows in the similar way as above. We assume A = limn Pn(a)
and B = limn Pn(b).
Then we want to prove f(x) → A. In fact, we have:
|f(x)− A| ≤ |f(x)− Pn(x)|+ |Pn(x)− Pn(a)|+ |Pn(a)− A|.
The middle term still follows the continuity of Pn at a. The first term is
controlled by the uniform convergence of Pn → f in (a, b). The last term is what
we have proved: A = limn Pn(a). So we have f(x) → A as x → a+.
Similarly we have f(x) → B as x → b−. Finally make an extension f̃ of f as I
mentioned. We have the uniform continuity of f̃. So f(x) is uniformly continuous
in (a, b).
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Review. Power Series

Thm 11.1.1:
∑

n anxn converges at x0, then it’s inner closed absolutely and
uniformly convergent in (−|x0|, |x0|).

Thm 11.1.2: Let ρ = lim supn→∞ |an|
1
n and R is the convergent radius for power

series
∑

n anxn, then (1)If ρ = ∞, R = 0, (2)If ρ = 0, R = ∞, (3) If 0 < ρ < ∞,
R = 1

ρ
.

Corollary: The above ρ can be replaced by ρ = limn
|an+1|
|an|

and we have similar
results.
Thm 11.2.1 (Abel): If the convergence radius for

∑
n anxn is R, then (1) it’s inner

closed uniformly convergent in (−R,R).(2)If
∑

n anRn converges, the power series
is uniformly convergent in any closed interval inside (−R,R].(3)If

∑
n an(−R)n

converges, the power series is uniformly convergent in any closed interval inside
[−R,R).
f(x) =

∑∞
n=1 an(x − a)n is continuous in convergence domain as a function, the

infinite summation can exchange with the integral with respect to x. If the
convergence radius is R, it can be differentiated arbitrary in (x0 − R, x0 + R), i.e.,
it’s smooth in that interval. So we have an =

f(n)(x0)
n! .

Weiestrass: for any function f ∈ C[a, b], we can find a series of polynomials
{Pn}n≥1 s.t. Pn ⇒ f in [a, b].
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Review. Fourier Series

The origin of Fourier series is∫ π
−π sin(mx) sin(nx)dx = 0 when m ̸= n and = π when m = n.∫ π
−π cos(mx) cos(nx)dx = 0 when m ̸= n and = π when m = n.∫ π
−π sin(mx) cos(nx)dx = 0 for any m, n.

So if f(x) = a0
2

+
∑

n an cos(nx) + bn sin(nx), use the above identities we can get
1
π

∫ π
−π f(x) cos(nx)dx = an and 1

π

∫ π
−π f(x) sin(nx)dx = bn. Actually, {sin(nx)}

and {cos(nx)} form a orthogonal basis for function space, if you define the inner
product to be (f, g) = 1

π

∫ π
−π f(x)g(x)dx.

For finite dimensional linear space, in linear algebra you have any vector can be
represented as a linear combination of the basis. But in infinite dimensional
space, you cannot always have this property. Even if you find a series of
orthogonal functions, it’s hard to justify that any function can be represented as a
linear combination of those orthogonal ones.
The actual meaning of above infinite linear combination is: you can find a series∑

anen whose partial sum can approach any given function, where en are those
orthogonal functions.
A function space without any restriction is not possible to do the above things.
One possible example is to consider functions with

∫
f2(x) < ∞. Then {sin(nx)}

and {cos(nx)} forms a possible series of orthogonal functions with the above
property, if you consider the “approach” as convergence in the mean square:
gn → f means

∫
|f − gn|2dx → 0.
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Review. Fourier Series

The Fourier coefficients can be calculated in the previous slides.
1
π

∫ π
−π f(x) cos(nx)dx = an and 1

π

∫ π
−π f(x) sin(nx)dx = bn for any function. But

the convergence needs to be proved, here you can only write
f ∼ a0

2
+

∑
n an cos(nx) + bn sin(nx).

The Fourier coefficient and the Fourier series is not changed if you change finite
values of the original function.
(uniqueness) If f is continuous and 2π period, an = bn = 0 implies f = 0.
(Riemann-Lebesgue Lemma) If f is integrable on [a, b] or absolutely integrable at
its singular point in [a, b], then

∫ b
a f(x) sin(x)dx → 0 and

∫ b
a f(x) sin(x)dx → 0 as

λ → ∞.
(Riemann localizaion) The convergence of the Fourier series at x0 only depends
on the value of f in the neighborhood (x0 − δ, x0 + δ) of x0, ∀δ > 0.
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Review. The convergence of Fourier Series

The main idea to prove the convergence is to use the Riemann-Lebesgue Lemma.
Calculate the partial sum of the Fourier series when putting into the formula
calculting the Fourier coeffients:

Sn(x) =
a0
2

+
n∑

k=1

(ak cos(kx) + bk sin(kx))

=
1

2π

∫ π

−π
f(t)dt + 1

π

∫ π

−π
f(t) cos(nt) cos(nx)dt + 1

π

∫ π

−π
f(t) sin(nt) sin(nx)dt

= · · ·

=
1

π

∫ π

0
(f(x + t) + f(x − t))

sin(n + 1
2
)t

2 sin t
2

dt

So to prove Sn → S, we just need to prove∫ π
0

f(x+t)+f(x−t)−2S0
2π sin( t

2
)

sin(n + 1
2
)tdt → 0. Note

∫ π
−π

sin(n+ 1
2
)t

2π sin( t
2
)

dt = 1

By Riem-Leb Lemma we have
∫ π
−π(

1
t − 1

2 sin( t
2
)
) sin(n+ 1

2
)tdt → 0 as n → ∞. So

use the previous result and changing the variable we can obtain:
∫

R
sin(t)

t dt = π.

Yongli Peng PKU Exercise class for mathematical analysis (iii) June 26, 2020 11 / 27



Review. The convergence of Fourier Series

So to use the Riemann-Lebesgue Lemma, we just need to justify when will the
function f(x+t)+f(x−t)−2S0

2π sin( t
2
)

be well-behaved, that is, integrable or absolutely
integrable at singular point.
It’s easy to see 0 is a possible singular point. So we need the function to have
some great property to compensate this singularity at 0. Moreover, we need only
to consider f(x±t)−S0

t , since the singularity is cancelled for 1
t − 1

2 sin( t
2
)
.

Then various deduction can be referred to your textbook. Here just list the
results (φ(t) = f(x + t) + f(x − t)− 2S0):

If f is piecewisely differentiable, we have Sn(x) → f(x+0)+f(x−0)
2 , where f(x ± 0)

denotes the left (right) limit of f at x.
(Dini) f is integrable on [−π, π] or absolutely integrable at singular point,
∀x0, ∃δ > 0, s.t.

∫ δ
0

|φ(t)|
t dt < ∞, then Sn(x0) → S0.

(Lipschitz) f is integrable on [−π, π] or absolutely integrable at singular point,
|f(x0 + t) − f(x0)| ≤ L|t|α ∀t ∈ (x0 − δ, x0 + δ) (α−Holder continuous), then
Sn(x0) → f(x0). (Holder continuous is a generalization of Lipshitz continuous, and
stronger than merely continuous, as we have mentioned, continuous is not enough to
ensure the convergence of Fourier series, there’s a counterexample).
(Dirichlet) f is integrable on [−π, π] or absolutely integrable at singular point, if f is
monotone on (x0 − δ, x0) and (x0, x0 + δ) where x0 is not a singular point, then
Sn(x0) → f(x0−0)+f(x0+0)

2 .
More generally, piecewisely monotone is also sufficient (Jordan).
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Review. The convergence of Fourier Series

Sometimes we cannot prove the convergence, we will take a step back, consider
some weaker form: does arithmatic average S0+S1+···+Sn

n+1
→ f(x)? Similarly

replacing the coefficients and after tedious calculation, we get Fejer kernel Φn(t)
and S0+S1+···+Sn

n+1
= 1

π

∫ π
−π f(x + t)Φn(t)dt.

Typically you cannot use the previous knowledge to prove the convergence of
Fourier series. This series is a special one. We not only want it converge, we also
link the converging result with the original function. But 12.3.1 says the
pointwise converging series with the original function f being continous and
2π−periodic ensures the series converge to f.
We can also consider the mean square convergence and the uniformly
convergence of Fourier series,

∫
|Sn − f|2dt and Sn ⇒ f.

The mean square convergence is the easiest to satisfy. If f is integrable on [−π, π]
or absolutely integrable at singular point, then

∫ π
−π |Sn − f|2dt → 0. As a

corollary, we have the Parseval’s identity: a20
2

+
∑

n(a2n + b2
n) =

1
π

∫ π
−π f2(x)dx.

And more genral Parseval’s identity:
a0α0

2
+

∑
n(anαn + bnβn) = 1

π

∫ π
−π f(x)g(x)dx.

Since it’s derived from the mean square convergence, we don’t need the series
converge for above results.
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Review. The convergence of Fourier Series

If f is 2π−periodic and f′(x) exists and integrable on [−π, π], then Sn(x) ⇒ f(x).
If f′′ exists and integrable on [−π, π], then we can differentiate termwise:
f′(x) =

∑
n(nbn cos(nx)− na sin(nx)). But the relation between the Fourier

coefficients don’t need 2−order differentiation, just integrate by parts.
If f is integrable on [0, 2π] and 2π−periodic, then we can integrate termwise:∫ x
0 f(t)dt = a0x

2
+

∑
n(

an
n sin(nx) + bn(1−cos(nx))

n 0)
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Exercise

11.12
If the positive series

∑
n≥0 an diverge, the power series

∑
n≥0 anxn has convergence

radius 1, then limx→1−0
∑

n=0 anxn = ∞.

Proof.
Let f(x) =

∑
n anxn be the power series, with domain x ∈ (−1, 1). We want to prove

limx→1−0 f(x) = ∞. So we need ∀M > 0 to find δ such that when 1− x < δ we have
f(x) > M.
Since we have the inequality (when x is near 1, it must be positive and so each term in
the series is positive):

f(x) =
∑

n
anxn ≥

N∑
n=0

anxn

≥
N∑

n=0

an(1− δ)n (each term is positive)

≥
N∑

n=0

an(1− nδ) (Bernoulli’s inequality)
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Proof

Proof.
Since

∑
n an = ∞ (a positive series can only be ∞ or converge), for the same M, we

can find N1, s.t.
∑N1

n=0 an > M + ϵ for some fixed ϵ. Then for that N1,
∑N1

n=0 nan is
finite, so we can find δ small enough so that δ < ϵ∑N1

n=0 nan
.

Finally for the above inequality let N = N1 and we obtain:
f(x) ≥

∑N1
n=0 an − (

∑N1
n=0 nan)δ > M + ϵ− ϵ = M. And this inequality is true for any

x > (1− δ), so this proves limx→1−0 f(x) = ∞.

11.13
If f(x) (not a constant) can be expanded as a power series at any point in x0 ∈ (a, b)
with a positve radius r > 0. Prove the zero set of f(x) in (a, b) does not have
accumulation points.
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Proof

Proof.
Since f(x) can be expanded as a power series at any x0 ∈ (a, b) and f nonconstant,
which implies the series cannot be ≡ 0. Otherwise we have f ≡ 0 on certain interval,
then expand f as a power series at the endpoint of that interval we can extend the
interval to get a larger interval on which f ≡ 0. Repeat this process and finally we can
only have f ≡ 0 on (a, b), which contradicts our assumption.

Then if the zero set of f has a accumulation point x0, we can derive the power series
for f expanded at x0 must be f ≡ 0, which contradicts our previous argument. To
prove this, notice the power series expanded at x0 is just the Taylor expansion of f at
x0, so we just need to prove the n-th differentiation f(n)(x0) = 0 at that point. Which
can be done using mean value theorem.

First since x0 is accumulation point, there is a seq of {xn} with f(xn) = 0 and
xn → x0. Since f can be expanded as a power series at x0, f ∈ C∞ near x0. So it’s
continuous, and we have f(x0) = 0.
Then for each [xi−1, xi] (assume xi−1 < xi without loss of generality), since
f(xi−1) = f(xi) = 0, we get a point x1i ∈ [xi−1, xi] with f′(x1i ) = 0. This can be done
for each i. For the inequality: xi−1 ≤ x1i ≤ xi (or the converse direction) we have
|x1i − x0| ≤ max{|xi − x0|, |xi−1 − x0|}. Take a limit and we get x1i → x0 with
f′(x1i ) = 0. Hence f′(x0) = 0.
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Proof

Repeat the above process and we can get {x2i }, {x2i }, · · · with f(2)(x0) = 0, f(3)(x0) =
0, · · · . So the expansion at x0 must be identical to zero, which gives a contradiction.

11.15
If f(x) is continuous on [0, 1] and satisfy:∫ 1

0
f(x)xndx = 0, n = 0, 1, 2, · · ·

Prove: f(x) ≡ 0 on [0, 1].

Proof.
Since

∫ 1
0 f(x)xndx = 0 for any n, we get

∫ 1
0 Pn(x)f(x)dx = 0 for any polynomial Pn.

But since f is continuous on [0, 1], use the Weiestrass approximation theorem and we
get a seq of polynomials {Pn} with Pn ⇒ f. And so the limit can be taken into the
integral and we get:

lim
∫

f(x)Pn(x)dx =

∫
lim f(x)Pn(x)dx =

∫
f(x)2dx

But the left hand side is always 0, so we get
∫

f(x)2dx = 0. Thus f ≡ 0 on [0, 1].
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Exercise

11.17
If f(x) can be approximated uniformly by polynomials on an infinite interval, prove f(x)
must be a polynomial too.

Proof.
Since f(x) can be approximated uniformly by a series of polynomials. First we prove
the degree of the polynomials must be equal as n is large enough. Then we prove each
coefficient of order k will be unchanged as n is large enough. Combining these two
results the limit f(x) will only be a polynomial.

1. degPn must be unchanged. Suppose the infinite interval is just (b,∞) without loss
of generality. Then we have |Pn − Pm| < ϵ for x > b and some N > 0 with n,m > N
by Cauchy’s criterion. Then Pn and Pm must have the same order, otherwise when we
let |x| → ∞, Pn

Pm
→ ∞ if degPn > degPm. But from |Pn − Pm| < ϵ we have

| Pn
Pm

− 1| < ϵ
|Pm| → 0 and so | Pn

Pm
| must be bounded, which is a contradiction.

2. In a similar way we can prove the coefficients of the same order must by equal for
large n. From above discussion we have Pn

Pm
→ 1 as |x| → ∞.
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Exercise

Proof.
If we assume degPn = degPm = d, Pn(x) =

∑d
i=0 aixi and Pm(x) =

∑d
i=0 bixi, then

the above limit implies Pn
Pm

= ad
bd

= as |x| → ∞. So ad = bd and this term is
eliminated in |Pn − Pm|, which derives two d − 1-th degree polynomial. Apply the
above process repeatedly and in finite steps we can get ai = bi for any 0 ≤ i ≤ d.

Since the above steps only runs in finite steps, eventually we can get a finite threshold
N s.t. ∀n,m > N, we have Pn ≡ Pm. Thus, f can only be a polynomial.

11.20
If f is continuous on [0, 1], ∀n ∈ N, define:

Bn(f, x) =
n∑

k=0

(n
k

)
f
( k

n

)
xk(1− x)n−k

Prove: Bn(f, x) ⇒ f(x) on [0, 1] (Bn(f, x) is called the Berstein polynomial of degree n,
it gives a concrete polynomial approximation of any continuous function, which can be
used in computation).
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Exercise

Proof.
First notice

∑n
k=0

(n
k
)
xk(1− x)n−k = 1. In the probability, if you think x as the

probability one trail succeeds. Then
(n

k
)
xk(1− x)n−k is just the probability that in n

trials there is exactly k trials succeed. Then assume you are doing an experiment and
you are observing the number of trials that succeed in these n trials. Once you get an
observation k, you make a further calculation and obtain a quantity you are interested:
f( k

n ). So
∑n

k=0

(n
k
)
f
(

k
n

)
xk(1− x)n−k is just the averaged value you can get from the

above experiment, observation and calculation. And f(x) is actually the real value you
desired, since k

n you used in the calculation is just the frequency of the success trial, in
probability we have k

n → x (frequency will approach probability) in some sense.
Therefore Bn(f, x) ⇒ f(x) is natural.

To prove the argument formally, first we only need to prove∑n
k=0

(n
k
) (

f( k
n )− f(x)

)
xk(1− x)n−k → 0. But since f is continuous, we have a δ > 0

s.t. if | k
n − x| ≤ δ, we have |f( k

n )− f(x)| < ϵ and this part is done. The annoying part
is the remaining one:

∑
|k−nx|>nδ

(n
k
) (

f( k
n )− f(x)

)
xk(1− x)n−k
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Exercise

Proof.
A few calculation concerning combinatory gives:

∑n
k=0

(n
k
)
kxk(1− x)n−k = nx and∑n

k=0

(n
k
)
k(k − 1)xk(1− x)n−k = x2n(n − 1). So we have∑n

k=0

(n
k
)
( k

n − x)2xk(1− x)n−k =
x(1−x)

n , which is just the variance you learned in the
high school. But this can help us to control the remaining terms:

x(1− x)
n

=
n∑

k=0

(n
k

)
(

k
n
− x)2xk(1− x)n−k ≥

∑
|k−nx|>nδ

(n
k

)
(

k
n
− x)2xk(1− x)n−k

≥ [
∑

|k−nx|>nδ

(n
k

)
xk(1− x)n−k]ϵ2

So
∑

|k−nx|>nδ
(n

k
)
xk(1− x)n−k ≤ x(1−x)

nϵ2 → 0, which means for ϵ > 0 we can have n
large enough so that

∑
|k−nx|>nδ

(n
k
) (

f( k
n )− f(x)

)
xk(1− x)n−k ≤ 2M x(1−x)

nϵ2 ≤ ϵ

where M = maxx∈[0,1] |f(x)|. This completes the proof.
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Exercise

12.4
If f(x) is 2π−periodic and f ∈ C2(−∞,∞), assume the Fourier series of f is:

f(x) ∼ a0
2

+

+∞∑
n=1

(an cos nx + bn sin nx) .

Calculate the Fourier series for f′(x) and f′′(x) and prove ∃C > 0 s.t.

|an| ⩽
C
n2

, |bn| ⩽
C
n2

, n = 1, 2, · · ·

Proof.
The Fourier series for f′ and f′′ can be derived just from integration by parts:
f′ ∼

∑
(nbn cos(nx)− nan sin(nx)) and f′′ ∼

∑
(−n2an cos(nx)− n2bn sin(nx)). Since

f′′ is continuous and 2π−periodic implies f′′ is bounded, we have
|a′′n | = 1

π
|
∫ π
−π f′′(x) cos(nx)dx| ≤ 1

π

∫
|f′′(x)|dx ≤ 2M, where M ≥ |f′′(x)|. So ∃C > 0,

s,t, |an| ⩽ C
n2 , |bn| ⩽ C

n2 .
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Exercise

12.5
If f can be expressed as the difference of two monotone functions on [0, 2π], its Fourier
series is denoted as:

f(x) ∼ a0
2

+

+∞∑
n=1

(an cos nx + bn sin nx) .

Prove: an = O
(
1
n
)
, bn = O

(
1
n
)
.

Proof.
We just need to prove the case when f is monotone. And we just assume f is
decreasing. Then

an =
1

π

∫ 2π

0
f(x) cos(nx)dx =

1

nπ

∫ 2nπ

0
f(u

n
) cos udu (u = nx)

=
1

nπ
[

∫ π
2

0
+

∫ π

π
2

+ · · · ]

≤
1

nπ
[f( π

2n
)− f( π

2n
) + f(π

n
)− f( 2π

n
) + · · · ]
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Exercise

Proof.

Since
∫ (k+1)π

2
kπ
2

cos udu = 1 when k is even and = −1 when k is odd, use the monotone
property we can derive the above alternating summation. To be precise, we get:
an ≤ 1

nπ [f(πn )− f( 2πn ) + f( 3πn )− · · · ]. On the one hand, since f is decreasing, we have
f( (2k−1)π

n ) ≥ f( 2kπ
n ), we have the right hand side RHS ≥ 0. On the other hand, we

have f( 2kπ
n ) ≥ f( (2k+1)π

n ) and we get RHS ≤ 1
nπ (f(πn ) + f(2π)). Hence we get

an = O( 1n ). The case for bn follows in the similar way.

12.9
If f ∈ C1[0, 2π] and f(0) = f(2π),

∫ 2π
0 f(x)dx = 0. Prove∫ 2π

0 [f′(x)]2 dx ⩾
∫ 2π
0 [f(x)]2dx.

Proof.
Just use the Parseval’s identity for f(x) and f′(x). Notice the relationship between the
Fourier coefficients of f and f′.
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Exercise

12.11
Prove there exists infinitely many Fourier series

∑+∞
n=0 (an cos nx + bn sin nx) uniformly

converge to 0 on [−1, 1].

Proof.
Just find functions equal 0 on [−1, 1] but ensure their Fourier series uniformly
converge. By theorems in the textbook we just need f′(x) ∈ R[−π, π]. A good choice
is to make f′(x) continuous. So we just need to extend 0 on [−1, 1] to [−π, π] so that
their first order differentiation will be consistent at the endpoint 1 and −1. Various
quadratic funtions may be good choice since their differentiation at the their extreme
point is zero.

A special case is e−
1

x2 . This function is even and its arbitrary differentiaion at x = 0 is
0, but itself is not 0, which means we can not only require the first order
differentiation to be consistent at the endpoint, but we actually can have any order
differentiation to be consistent.

Yongli Peng PKU Exercise class for mathematical analysis (iii) June 26, 2020 26 / 27



Exercise

12.14
Assume f, g are 2π−periodic and integrable on [−π, π]. Prove their Fourier series are
identical if and only if

∫ π
−π |f(x)− g(x)|dx = 0.

Proof.
Just use Parseval’s identity. f and g have identical Fourier series is equivalent to f − g
has all Fourier coefficients to be zero, which indicates

∫
|f − g|2dx = 0. But first by

Cauchy-Schwartz inequality,
∫ π
−π |f − g|dx ≤ (

∫ π
−π |f − g|2dx)0.5(

∫ π
−π dx)0.5. On the

other hand, we have
∫ π
−π |f − g|2dx ≤ 2M

∫ π
−π |f − g|dx where M > |f(x)| and

M > |g(x)| on [−π, π] (Riemann integrable indicates the function is bounded).

Therefore
∫ π
−π |f − g|2dx = 0 iff

∫ π
−π |f − g|dx = 0 and this completes the proof.
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