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Abstract

In this report, we want to treat the random process as a dynamic system and show how this
angle can offer quite different results in both fields. After clarifying the details in this change
of view, we will give many examples to illustrate what it can bring from this viewpoint. The
results in the former part of this report is mainly from probability book, which don’t appear
anywhere in the book of dynamic system, mainly because they focus on different things from
what is cared about in dynamic system. The results in latter part is mainly from books
of dynamic system. But each of them also has a corresponding version in the book about
probability. It’s quite interesting people in different area discovery the same results with
different technique to prove them.

1 Treat Random Processes As Dynamic Systems

1.1 Basic Setting

We show first how to treat a stochastic process as a dynamic system, mainly by considering it as
a symbolic system. First we shall give a formal definition for stochastic process in probability.

Definition 1.1. Given a probability space (2, B, P), a random variable (abbreviated as r.v.)
is a measurable map X from (2, F) to (A, B4) (where B denotes the Borel sets on that space).

This random variable is often associated with the case when A is the real line and B4 is the
Borel field on R in probability. Moreover, this measurability ensures that there exists a probability
measure inheriting the probability measure induced by this map:

Px(B)=P(XY(B))=P({w: X(w) € B}); B € Ba

So (A, B, Py) becomes a probability space and the induced measure Py is called the distribution
of f.

Definition 1.2. A random process is a family of random variables {X;;¢ € T} on a common
probability space (2, B, P), where T is an index set, often interpreted as time in probability. More
generally, a random process can be viewed as a function X : 2 x T — A, measurable in Q and
usually continuous in T.

This is an ordinary, elementary way to define a random process. But a random process can
be constructed from a single random variable together with a dynamic system consisting of a
probability space as well as a family of transformations on the space. First for a fixed w € €,
X (w) can be regarded as a function from T to A, denoted by AT. In our textbook [Sunl2|, we
have actually defined the product o-field B4r on AT for countable case, namely when T = Z or Z, .
In Gray’s book [GG8S8|, the product o-field B4r on AT for general T is defined in a similar way
using the smallest o-field containing all the rectangles. Then we can check this map from (€2, B) to
(AT B,r) is measurable since each component mapped to a single A is measurable. Furthermore
from the above discussion it has induced a probability measure Px on (AT ,Byr). Finally when
we require T to be a semigroup allowing an addition (not necessarily commutable) , we can give
a group action of T on itself using this addition and this induce a transformation on AT: for each
(at)ter where a; € A and s-induced transformation S, S((a¢)ier) = (@tts)ter- This is the most
general case. More typically, when T = Z or Z, the transformations are like the time shifts and
the system is similar to a symbolic system. When T = R the system acts like the flow.



1.2 Ergodic And Invaraint

In ergodic theory, we usually need the measure to be invariant (or preserved) w.r.t T and care if it’s
ergodic. If we try to interpret these two concepts in random process, we immediately find that the
invariance indicates the process to be stationary, namely the distribution of each r.v. in the process
is the same, since the volume of each rectangle in AT is just the joint distribution in probability.
As for ergodicity, it’s equivalent to recurrent in probability, which means when you trace along the
time, each point will be attained at some time point in the future. Note here I just consider the
countable case for simplicity. As for general cases I think it can be proved similarly, but I have not
considered its details in this observation. Thus set T = Z and reminded of a proposition in our
textbook saying that:

Proposition 1.3. Let T : (X,B,m) — (X, B, m) be measure-preserving, then
o T is ergodic <= VA € B with m(A) > 0, we have m(U,T~¢A) = 1.

In product space, since the o-field is generated by the rectangles, we only need to verify the
condition for the rectangles. In particular we only need to consider those rectangles with one co-
ordinate. For a general rectangle we can first decompose it into rectangles with continuous coordi-
nates. Then for a rectangle with k coordinates in this form, such as [ag, . .., arp—_1], we can construct
another random process from the present one. Let X = {(Xt, Xiq1,. . Xiyr); t € Z} and the mea-
sure Py inherit the original measure Px, namely the process can only go from (X4,..., Xy 1) to
(Xt41y--+, Xtyrt1). Otherwise the set is of zero measure. In this way, the discussion will reduce
to considering the rectangle with only one coordinates. In this case, m(U2,T~?A) = 1 is just a
formal definition of recurrent. Therefore, if we consider transitive group actions (action that can
attain any ¢ € T from a specific '), we have:

Proposition 1.4. For any transitive action T,

1. the system (AT, Byr, Px,T) is invariant <= the corresponding random process X is sta-
tionary.

2. It’s ergodic <= the corresponding process X is recurrent.

1.3 Examples

To end this section, we give two examples illustrating the above definition, whose property will be
discussed further in the following sections.

Example 1.5. (Bernoulli Shift) Let Y = {0,1,...,k — 1} denotes k symbols. (po,p1,...,Pk—1)
denotes a probability vector, i.e. p; > 0 for each i and Zf:_ol p; = 1. Then we can give a measure
pon (Y,2Y) by setting u(i) = p;. If (X, B,m) denotes the product probability space of (Y,2Y, i),

namely
oo

(X, B7m) = H(Y7 2Y7M)
—0o0
Define the transformation T as the left translation: T'(z;)*°, = (;41)%,, and let the value of m on
a rectangle be: mlag, a1, ...,an] = PagPay - - - Pa, - This system (X, B,m,T) is called a (two-sided)
Bernoulli shift. We have proved in our textbook that m is an invariant measure of T. Moreover, it’s
ergodic. But if we consider the corresponding random process, we can easily find the underlying
process is just a series of i.i.d (independent and identical distributed) r.v, which is commonly seen
in the statistics. In probability, it’s well acknowledged that this process is stationary and recurrent,
which indicates it’s invariant and ergodic.

Example 1.6. (Markov Shift) The Markov shift can be seen as a generalization of the Bernoulli
shift. Given a probability vector p = (po, p1,-..,pr—1) and a stochastic matrix

Poo .-+ DPok-1 k—1
P=| : : ;P =0, Y pi=1
Pk—1,0 -+ DPk—1k-1 3=0
which satisfy the relation: p-P = p. Then we can just define the measure by setting m[ag, a1, ..., a,] =

DaoPagay - - - Pan_1an- Lhen the system (X,B,m,T) with other things unchanged is called the



Markov shift. In fact, it corresponds to the well-known stationary Markov chain in probabil-
ity. A bunch of theoretical results in probability can be applied to this system in this manner.
In particular, we have in probability that each such Markov chain is recurrent if every point is
attainable (we call such a process irreducible later), which implies in dynamic system that the
Markov shift is ergodic iff Vi, j, 3n such that (P™);; > 0 . It’s also proved in our textbook.

2 Results From Probability Concerning Bernoulli Shift
2.1 Birkhoff Ergodic Theory And Law of Large Numbers

In this section, we take a look at the relatively simple system: Bernoulli shift, and see how consid-
ering the underlying random process can help us get a better understanding of the system.
First let’s take an investigation on the well-known BET (Birkhoff Ergodic Theory):

Theorem 2.1. (Birkhoff Ergodic Theory) Let T : (X,B,m) — (X, B,m) is measure-preserving,
and f € LY(X,B,m), then:

1. {+ S F(T) Y so converges to a function f*(x) € L'(X,B,m) for m - a.e. © € X.
2. f*oT(z)= f*(x) for m - a.e. x € X and [ fdm = [ f*dm.

More specificly, if T is even ergodic, we have for f € L*(X,B,m),

n—1
o1 i
Jin S pr) = [ gam
form - ae xze€X.

For the Bernoulli shift, we have observed it is measure-preserving and ergodic. Therefore if we
let f be the projection of (a;)*, onto its value when ¢ = 0, i.e. let f((a:)>°,) = ap. We shall have
(notice the measure Py is inherited from original P)

1 n—1 k—1
lim — E a; = E ipi
n—oo N
i=0 =0

for P - a.e. w € Q. This is just the SLLN (strong law of large numbers) for the case of finite
sample space in probability (the term in the right hand side is just the expectation in probability).
Therefore the BET provides another approach to prove the SLLN. Whereas the use of Borel-
Cantelli lemma and Markov’s Inequality may provide a novel proof of BET in the case of Bernoulli
shift (but it’s still a little tricky to tackle general f).

Theorem 2.2. (Strong Law of Large Numbers) Let X1, Xs,..., X,,... be a sequence of i.i.d r.v.
with E[X;] = p and E|X;| < oo (X; € LY(Q, F, P)), then lim,,_, %22;1 X; = pu for a.s. (P-a.e.)
w € Q.

This theorem asserts the BET is true for a product measure space (X, B,m) = [[>,_(Y,2Y, )
formed by general probability measure p on Y equipped with the left translation T as the trans-
formation.

Well, the above discussion may not be interesting for dynamic systems (but at least it’s quite
exciting for probability since SLLN is the most basic theorem in this field). So in the following
discussions we may derive some results from probability but not existing in dynamic system to
show that considering the underlying random process for these systems indeed offer some insights
into the system.

2.2 Central Limit Theorem

In this section, we try to interpret another basic theorem in probability, Central Limit Theorem,
in the context of Bernoulli shift. In probability theory, the central limit theorem (CLT) establishes
that, in some situations, when independent random variables are added, their properly normalized
sum tends toward a normal distribution (informally a "bell curve") even if the original variables
themselves are not normally distributed. The theorem is a key concept in probability theory



because it implies that probabilistic and statistical methods that work for normal distributions
can be applicable to many problems involving other types of distributions.

There’s a set of weak-convergence theorem in probability expressing the fact that a sum of i.i.d.
random variables, or alternatively, random variables with specific types of dependence, will tend to
be distributed according to one of a small set of attractor distributions. When the variance of the
i.i.d. variables is finite and fixed, the attractor distribution is the normal distribution. In contrast,
the sum of a number of i.i.d. random variables with power law tail distributions (decreasing as
|#| =711 where 0 < a < 2 and therefore having infinite variance) will tend to an alpha-stable
distribution with parameter « as the number of variables grows. Later we will show this is just an
optimization of the entropy with various constrictions.

First we may introduce the famous Gaussian distribution in the context of dynamic system
(just introduce the induced measure). I found reference in Sinai’s book [CFS12] calling it Gauss
measure, and it also discusses Gauss dynamic systems, which we shall mention later.

Definition 2.3. The measure 7 on the product measure space is said to be a Gauss measure
if the joint distribution of any finite number of r.v. (z(s1),...,2(s,)) is an r-dimensional Gauss
distribution, both in continuous and discrete cases. In measure theory’s word, the Radon Nikodym
derivative of the measure of a rectangle with k coordinates w.r.t the k-dimensional Lebesgue
measure is W exp (—1(z — a)TS7!(z — a)), where a is the expectation vector and ¥ is
the covariance matrix.

From the definition we shall see even if the expression of the Gauss distribution is a little bit
complicated, many researchers in statistics like to use it because it’s totally determined if the mean
value as well as the variance is fixed. This property is also popping up in the following discussion
of CLT.

In fact, the philosophy under CLT (central limit theorem) is rather simple: we just want to
estimate the difference between the measures appearing in SLLN. Let i, , = %Z?:_ol Opig, from

the BET we know if i is an ergodic measure, then g, % 4 in the sense of weak-* topology for
m-a.e. x. But we are now curious about how far is y, , from p. Like in the process of proving
ergodic decomposition theorem, here we shall not consider a single x but treat it as a r.v. Then
we shall have [ fd(jin. —p) = £ S0 f(T%x) — [ fdu is not a number, but a r.v and can induce

n
a measure. The CLT states that [ fd(y/n(in. — p)) —» 7 where 7 is just the Gauss measure
mentioned above (it’s of zero mean, but its variance will be determined by f):

Theorem 2.4. (Central Limit Theorem) [ fd(v/n(tine — 1)) —> T as n tend to infinity, where T
denotes the Gauss measure with zero mean and variance determined by f, here f € L*(X,B,m).

Therefore, when considering dynamic systems of a product measure space, turn to its underlying
random process may sometimes be helpful to have a further insight into the system. In the case
of Bernoulli shift we can actually estimates how far the time averaging is from the integral or
the expectation. Although this treatment is not in the general sense and can be applied to other
systems, it can provide some subtle results towards the system concerning product space, which
cannot be obtained from the general methods in dynamic system. We shall give further examples
illustrating this in the later discussion of Markov shift.

2.3 Large Deviations Theory

We show in this subsection that a famous result in probability can induce more subtle estimates
towards the system of Bernoulli shift. It emerged in the 1930s with the Swedish mathematician
Harald Crameér’s study of a sequence of i.i.d. random variables (Z;);en. Namely, Cramér studied
the behavior of the distribution of the average X, = 23"  asn — oco. He found that the tails
of the distribution of X,, decay exponentially as e~"*(*) where the factor A(z) in the exponent is
the Legendre-Fenchel transform of the cumulant-generating function ¥z (t) = log Ee!?. A very
incomplete list of mathematicians who have made important advances afterwards on this field
would include Petrov,Sanov, S.R.S. Varadhan (who has won the Abel prize for his contribution to
the theory), D. Ruelle (who has worked on dynamic systems), O.E. Lanford, Amir Dembo, and
Ofer Zeitouni.

We know by SLLN that if X = £1+-FXa then X — FX for m-a.e. w € Q, but in probability

n

we can have a more precise estimation of P(|X — EX| > t). This is just the philosophy of large



deviation theory as well as the various similar style inequalities in probability. In other words, it
implies how fast this deviation will tend to the Gaussian measure.

Theorem 2.5. (Hoeffding’s Inequality) Let X1,..., X, be i.i.d random variables bounded by the

interval [a,b] (in Bernoulli shift we just have a =0 and b=k — 1) and X = X1t=EXn then
o2nt? )

(b—a)?

This is frequently used in statistics, but in probability people care more about the general case
for general distributions. Then we shall get

P(|X — EX|>t) < 2exp (-

Theorem 2.6. (Cramer’s Theorem) The logarithmic moment generating function of a random
variable is defined as: A(t) = log Elexp(tX1)]. Let X1, Xs,... be a series of i.i.d. real random
variables with finite logarithmic moment generating function, A(t) < oo for allt € R.

Then the Legendre transform of A : A*(x) := sup,cp(tz — A(t)) satisfies,

1 n
nlgrgo - log <P (?_1 X; > nm)) A (z)

Note here in this section we mainly interprets those subtle results in probability into dynamic
systems to have some insights in this product dynamic system. But these examples also show
the things we care, the techniques we use in probability may be a little far from what researchers
do in dynamic systems. The most challenging thing in combining these two fields might be: in
probability we usually care the behavior of the process when it’s not stationary (which means we
don’t expect we have an invariant measure whereas in ergodic theory we make it a prequisite) while
in ergodic theory we usually care if a transformation is measure-preserving, under what conditions is
it ergodic or periodic, how to calculate its entropy, etc. But in probability, people mainly focused
on process with Markov property, which in most situations will be ergodic if equipped with an
invariant measure. Moreover, we have calculated its entropy in the class, even the topological
entropy of Bernoulli shift is well calculated. But for general cases, the entropy of a system is quite
hard to obtain. Therefore people in probability always turn to consider the change of entropy,
namely entropy production rate, which is inspired mainly by statistical physics.

In conclusion, although we can link these two field in some sense, there’s much difference
between these two areas ranging from its goal and the technique. But there’re still things similar
in both area, like there’re theories developed in both field seperatedly, using different techniques,
but saying the same thing. So we will focus on the dynamic system’s viewpoint in the following
section.

3 Results From Probability Concerning Markov Shift
3.1 Mixing

We will introduce the mixing property in dynamic system in this part. Then we shall show its
correspondence in the context of Markov process. Interestingly, this property is proved in both
fields but with quite different techniques. Eventually, we will prove it from dynamic system’s
viewpoint.

Definition 3.1. We say that the system (X, B, m,T) is mixing if
li_}rn m(T~"(A) N B) =m(A)m(B)

for any A, B € B measurable.

Technically, we just need to verify the above identity w.r.t the sets in an algebra A that generates
the o-field B. For the case of Bernoulli shift and Markov shift, we just need to verify the identity
subject to the rectangles.

Example 3.2. Every Bernoulli shift is mixing. Given any two rectangles A = [A,, ..., 4,] and
B =|B,,...,B;]. We have:

m(T~™(A) N B) =m([Br, ..., B, X,..., X, Ap, ..., Ag)))
=m([By,...,B))m([Ap, ..., Ag]) = m(A)ym(B)



for every n > s — p. Hence it remains to be true when n tend to infinity. So Bernoulli shift is
mixing.

Then we list the corresponding theory in Markov process as below:

Theorem 3.3. If the Markov process is irreducible and aperiodic, w is the invariant measure, then

Tim Yl =l =0
JEA

for any i € A. More specifically, lim,,_,~ pg;) =7

Here irreducible is clarified at the beginning: Vi, j € A, there exists n > 1 such that p;;(n) > 0,
where p;;(n) is the (ij)-element of the matrix P™. We say a Markov process (or the stochastic matrix
P) is aperiodic if there exists n > 1 such that p;;(n) > 0 for every ¢,j € A.

First we shall show how this property is equivalent to the mixing property. In the definition of
mixing, if we just set A = {(x)®, : xg =i} and B = {(2)®° : g = j}, then the left hand side is
just m({(z)> : xo = j,xn, = i}) = m;pj;(n) while the right hand side is m;m;. Therefore it can be
derived that p;;(n) — ;. This is just what we said for the Markov process above.

More formally, we have the following theorem from the dynamic systems’ side:

Theorem 3.4. Let T': M — M be a mizing transformation relative to some invariant probability
p. Let v be any probability measure on M, absolutely continuous w.r.t p. Then To'v weak-*
converges to p, where T]'v is inherited from v induced by f.

Proof. Let ¢ =15 and ¥ = g—z. Note that ¢ € L (u) and ¥ € L(u). Hence,

/(1BoT”d—Udu) —>/¢d,u/\lldu:/13d,u/d—vdu
du du

where the convergence is the result of the mixing property. The sequence on the left-hand side
coincides with [(1p 0 T"dv = v(T~"(B)) while the right-hand side is just p(B) [ 1dv = u(B). So
va 5. O
Remark 1. In this theorem we need the initial measure v to be absolutely continuous w.r.t pu,
which is also required in Markov process where we need the process to be irreducible. It’s natural
to have this irreducible behavior since you can never imagine having a path with positive measure
and its reversed path of zero measure (in dynamic system a path is just a rectangle with continuous
coordinates). So starting from any measure given the mixing property, you will always converge
to the invariant measure.

Theorem 3.5. If the stochastic matriz P is irreducible, then the following are equivalent:
1. The Markov shift (X,B,m,T) is mizing
2. The stochastic matriz P is aperiodic

3. llmnﬁoo p”(n) =Ty

Proof. (2) < (3): Since we assume the matrix is irreducible, then 7; > 0 for every j, then
limy, 00 pij(n) = m; implies p;;(n) > 0 for every 1,j and every n sufficiently large.

(2) = (3): Now suppose P is aperiodic. Then we may apply the theorem of Perron-Forbenius
to the matrix P. since 7 is an eigenvalue of P with positive coefficients, we get the maximal
eigenvalue to be 1 and all the other eigenvalues are smaller than 1 in the absolute value. It’s easy
to see the hyperplane H = {(h1,...,hq) : h1 + ... + hqg = 0} is invariant is invariant under P
if treating it as a linear map. Then the decomposition R? = Rx @ H is invariant under P and
the spectral radius of H is less than 1. Therefore P™ will converges to the projection of the first
coordinates in the decomposition. So lim, . p;j(n) = 7;.

(1) = (3): Suppose the measure m is mixing. From the informal argument, let A = {(x)> :
xo =1} and B = {(z)>, : 0 = j}, then we can derive (3).

(2) = (1): Now suppose that the matrix P is aperiodic. We want to conclude p is mixing.

Then we just need to prove the identity in the definition w.r.t the rectangles. Set A = [asm,, ..., aq]
and B = [by,...,bs] (the subscript denotes its coordinates). Then we can calculate:
1

m(ANT™(B)) = m(A)m(B);paq,br (r—q+1)



for every I > g — r. Then using (3) and let | — 0o we can verify the identify in the definition of
mixing in this case. This completes the proof. O

3.2 Kac Theorem

In this part we proof a certain generalization of the Poincare recurrence theorem, the Kac theorem,
and in turn present its version in probability, showing there’s some similarity in the development
of probability and dynamic systems.

Let T : X — X be a measurable transformation and m be a finite measure invariant under
f. Let E C X be any measurable set with m(E) > 0. Consider the first-return time function
pE : E = NU{oo}, defined by:

pe(z) =min{n >1:T"(z) € E}

if the set on the right-hand side is non-empty and pg(x) = 0 if, on the contrary, x has no iteration
in E. According to the Poincare recurrence theorem, the second case occurs only on a set with zero
measure.

The Kac theorem shows this function is integrable and even provides the value of integral. For
the statement we need the following notation:

Eoy={x€E:T"(z) ¢ E, ¥n >1}

Ej={zreX:T"(x) ¢ E, Vn >0}

In other words, Ey is the set of points in E that never return to E. Ej is the set of points in M
that never enter E. We have show m(Ep) = 0.

Theorem 3.6. (Kac) With the above setting, the function pg(z) is integrable and

/E psdy = m(X) — m(Ey)
Proof. For each n > 1, define
w={r€FE:T(x)¢E,..., T" *(z) ¢ B, T"(z) € E}

Er={zecX:2¢ET(x)¢E,...,T" (z) ¢ E,T"(x) € E}

that is, E, is the set of points return to E for the first time exactly at time n, E,, = {z € F :
pe(z) = n}, and E} is the set points that are not in E and enter E for the first time exactly at
time n. It’s clear these sets are measurable and hence pg(x) is a measurable function. Moreover,
these sets for n > 0 constitute a partition: they are pairwise disjoint and their union is the whole
of X. So

m(X) =) (m(En) +m(Ey)) = Z ) +m(Ey))
n=0 n=1
Now observe that
T YE:) =E: UE, 1
So given m is invariant, m(E;) = m(E}; ;) +m(E,41). Applying the relation successively, we find

that m(E}) = m(Ef) + Ef:nﬂ m(E;) for every k > n. The convergence of the summation series
in the first formula implies that m(E}) — 0 when k — co. So after taking the limit, we shall have

m(E;) = ) m(E)

i=n+1

Replace this identity in the first formula, we find that

m(X) = () = 32 m(E) = 3 () = [ prn

as we want to prove. [



In some cases, for example when the system is ergodic, m(E() has zero measure. Then the
conclusion of the Kac theorem means that

1 _ m(X)
Hﬁé”w‘mm

for every measurable set E with positive measure. The left-hand side is the mean return time to
E. This is just what we assert in probability in the context of Markov process.

Theorem 3.7. If the Markov process is irreducible, the followings are equivalent:

1. There’s a state i € A such that f{i} p{iydP; < oo, where P is the induced Markov measure
starting from a Dirac measure supported at {i} with matriz P.

2. Every states i € A satisfies (1).

8. There exist an invariant measure 7.

Moreover, when the above conditions is satisfied, we also have:

1

Vie A
Eip;’ 'e

T, =

where E;p; = f{i} pyiydP;.

Remark 2. Since E;p; = f{i} pgiydP; is just ﬁ Ji pedp in the Kac theorem. This theory in
probability possess the same result as the Kac theorem. Therefore if we just constrict ourselves to
the path starting at a single point or a specific set E, these two theorems are equivalent, regardless
of whether the measure is invariant (since the later behavior is totally determined by the matrix
P).

Remark 3. In probability, pg defined here is quite important. It can introduce one of the most
important concepts in advanced probability, martingale. So this again displays how much the
topics being discussed in these two areas different from the other since I only found Kac theorem
in [VO16] for a generalization of Poincare recurrence theorem but with no further discussion.

3.3 Entropy

In the last part, we discuss a little about the entropy. As a matter of fact, in probability we have
the concept of entropy but we don’t discuss its property further. However, recently inspired by
the statistical physics, there are a lot of discussions about the concept entropy production rate,
which is focused on the change of entropy in the time evolution. As for the entropy we discussed
in the class, though we can lift these process listed above to dynamic systems and calculate their
entropy, all the process is covered in class, which means there’s little left in this topic if we only
discuss the regular Markov process or i.i.d. process as usual in probability. So we may try to find
process with properties other than Markovian to consider this topic.

Proposition 3.8. A Bernoulli shift with the probability vector (po,...,pk—1) possess the entropy
. k—
being hy, (T) = — Zi:()l p; In p;

Proposition 3.9. A Markov shift with the probability vector as p = (po, . ..,pr—1) and the stochas-
tic matriz as P = (pij)uxr has the entropy being h,, (T) = — Z” pipij Inp;;

Moreover, using the variational principle, we can just calculate the maximal of these entropy to
have a guessing about its topological entropy. Because we have Z;:é pij = 1forevery 0 <i < k-1
and f(z) = zlnx is convex, it’s easy to derive Ef;é pijInp;; > k- +In4 = —Ink. Therefore for
Markov shift we shall get h,,(T) < Zf;ol Ink = Ink and so does the Bernoulli shift. Moreover,
we have proved in the class the topological entropy for Bernoulli shift is just In k. Since Bernoulli
shift is a special form of Markov shift, the topological entropy of Markov shift is also this value and

the equality in variational principle can be attained when the measure is distributed uniformly on
{0,...,k—1}.



Therefore, for finite and discrete case, the discussion of entropy is quite trival. As for infinite
cases, we can just let k& — oo, then both the entropy and the topological entropy will tend to
infinity and there’s nothing can be done.

But there’s something interesting in the continuous cases. If we just define the entropy of a
measure on continuous case to be — [ p(z) Inp(x)dz, then after adding some constrictions we can
get something interesting. First if we have no restrictions, this entropy can also tend to infinity like
the discrete case. But if we fix its mean [ zp(x)dz = 0 and variance [ 2?p(z)dr = o2, using calculus
of variation we can derive it attains its maximal when it’s a Gauss distribution. Moreover, if we
require z > 0 and fix the mean [ zp(z)dz = X, we shall get another famous distribution, exponential
distribution, in probability which maximize its entropy. Therefore, considering the entropy in
continuous case can provide an interpretation why these two distributions appear frequently in
probability and why we mainly discuss Gauss process and Poisson process in continuous case.

4 Gauss Dynamic Systems

In the last section, we provide with some results concerning with Gauss Dynamic Systems, which
is just the system on a similar product space whose underlying process is a Gauss process. That
is we specify the measure on that product space is a Gauss measure mentioned at the beginning.
Moreover, we set a(s;) = [ X(s;)dPx and b(s;,s;) = [ X(s;)X(s;)dPx being its mean function
and covariance function, then the system is totally determined by these two functions.

What’s more, the Gauss measure is invariant w.r.t T (which is left translation in the discrete
case) if

m(s) = m = const, b(s1,82) =b(s1 +t,s2+1)

for any integer t, then we can define

2

b(s1,s2) = b(0,s2 — s1) = b(s2 — 51)

. Further we assume m = 0 after a translation X (s) = X(s) — m. Then the function b(s) is said
to be the correlation function of the Gauss measure. Moreover it’s positive definite, so by the
Bohner-Khinchin theorem it may be presented in the form:

b(s) = / i e sda(N)

—T

where ¢ is a finite measure on the circle S*. The measure o is known as the spectral measure of
the Gauss measure p since it’s very similar to the Fourier transform w.r.t b in the measure sense.
Then we have the following proposition:

Proposition 4.1. The Gauss dynamic system is ergodic if and only the spectral measure o is
absolutely continuous with respect to the Lebesque measure on S'.

Proposition 4.2. If the correlation function satisfies b(s) — 0 for s — oo, then the Gauss system
1S MiTing.

We shall not list the proof here since they are tedious and using things concerning with the
spectral in functional analysis. Interested readers may refer to Sinai’s book [CFS12| at PP.188

and 356, where the author discussed a lot concentrating on the spectral analysis of Gauss dynamic
systems.

5 Conclusion

In conclusion, when treating the random process as a dynamic system on the product measure
space, you can find the correspondence is quite beautiful and you can interprete the results from
one field into the theory in another. This viewpoint is novel and beautiful. But you’ll find there’s
not a very solid theorem from this viewpoint (at least T haven’t found one), which means I haven’t
found a theorem which can only be proved in one field and is hard to prove in the other field. The
theorems coincides in these two fields are always quite simple. As for more difficult and advanced
theorems, they always seem important in one field but is not cared about in the other (or even can
be trival in the other).



This is caused mainly by the difference of focused point in these two fields. On the one side, in
probability people always care how the process behaves when it’s not invariant, and how it behaves
when time goes too infinity. How the process becomes or approaches the invariant measure attracts
people in this field. But on the other side, people study dynamic systems (mainly people study
ergodic theory) always suppose we are on a space with invariant measure. We are already on the
spot, but the underlying space can be too complex to do anything on it. The philosophy is quite
different. Probability mainly focus on the time evolution of the measure in the long run while
people study dynamic systems mainly focus on the spatial complexity (not only the measure) and
how this complexity evolves along time.

But the above divergence in the philosophy is made up in the recent study. At least I know
more and more people try to study process with complex space structure. It has been quite hot
in probability to consider the random walk on various complex geometric space, like manifold. I
have also read recently a paper concentrating on the topological recurrence in probability, namely
the recurrence property concerning with the topological structure on its neighborhood. All I write
above is just the results from elementary probability and elementary results in ergodic theory (since
T have just taken the course and begun to learn ergodic theory). All the above perspective may not
be comprehensive, even results may not be right because I'm at the beginning to combining these
two areas: ergodic theory and probability. But I believe there are a lot to do in this combination
of two total different fields. There might be many differences at the beginning, but I'm convinced
these differences can as well boost new theorems to pop up and blossom.

For the probability part, [Str13, KS12] are what we mainly referred to and cited.
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